cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 53 results. Next

A048143 Number of labeled connected simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 1, 5, 84, 6348, 7743728, 2414572893530, 56130437190053299918162
Offset: 0

Views

Author

Greg Huber, May 12 1983

Keywords

Comments

Also number of connected antichains on a labeled n-set.

Examples

			For n=3 we could have 2 edges (in 3 ways), 3 edges (1 way), or 3 edges and a triangle (1 way), so a(3)=5.
a(5) = 1+75+645+1655+2005+1345+485+115+20+2 = 6348.
		

Crossrefs

Extensions

More terms from Vladeta Jovovic, Jun 17 2006
Entry revised by N. J. A. Sloane, Jul 27 2006

A000666 Number of symmetric relations on n nodes.

Original entry on oeis.org

1, 2, 6, 20, 90, 544, 5096, 79264, 2208612, 113743760, 10926227136, 1956363435360, 652335084592096, 405402273420996800, 470568642161119963904, 1023063423471189431054720, 4178849203082023236058229792, 32168008290073542372004082199424
Offset: 0

Views

Author

Keywords

Comments

Each node may or may not be related to itself.
Also the number of rooted graphs on n+1 nodes.
The 1-to-1 correspondence is as follows: Given a rooted graph on n+1 nodes, replace each edge joining the root node to another node with a self-loop at that node and erase the root node. The result is an undirected graph on n nodes which is the graph of the symmetric relation.
Also the number of the graphs with n nodes whereby each node is colored or not colored. A loop can be interpreted as a colored node. - Juergen Will, Oct 31 2011

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 101, 241.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000595, A001172, A001174, A006905, A000250, A054921 (connected relations).

Programs

  • Maple
    # see Riedel link above
  • Mathematica
    Join[{1,2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n-1)/2+1, n*(n+1)/2]], 2],s] /. Table[s[i]->2, {i,1,n^2-n}], {n,2,8}]] (* Geoffrey Critzer, Nov 04 2011 *)
    Table[Module[{eds,pms,leq},
    eds=Select[Tuples[Range[n],2],OrderedQ];
    pms=Map[Sort,eds/.Table[i->Part[#,i],{i,n}]]&/@Permutations[Range[n]];
    leq=Function[seq,PermutationCycles[Ordering[seq],Length]]/@pms;
    Total[Thread[Power[2,leq]]]/n!
    ],{n,0,8}] (* This is after Geoffrey Critzer's program but does not use the (deprecated) Combinatorica package. - Gus Wiseman, Jul 21 2016 *)
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[Sum[GCD[v[[i]], v[[j]]], {j, 1, i-1}], {i, 2, Length[v]}] + Sum[Quotient[v[[i]], 2] + 1, {i, 1, Length[v]}];
    a[n_] := a[n] = (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]}]; s/n!);
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 17}] (* Jean-François Alcover, Nov 13 2017, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2 + 1)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000666(n): return int(sum(Fraction(1<>1)+1)*r+(q*r*(r-1)>>1) for q, r in p.items()),prod(q**r*factorial(r) for q, r in p.items())) for p in partitions(n))) # Chai Wah Wu, Jul 02 2024

Formula

Euler transform of A054921. - N. J. A. Sloane, Oct 25 2018
Let G_{n+1,k} be the number of rooted graphs on n+1 nodes with k edges and let G_{n+1}(x) = Sum_{k=0..n(n+1)/2} G_{n+1,k} x^k. Thus a(n) = G_{n+1}(1). Let S_n(x_1, ..., x_n) denote the cycle index for Sym_n. (cf. the link in A000142).
Compute x_1*S_n and regard it as the cycle index of a set of permutations on n+1 points and find the corresponding cycle index for the action on the n(n+1)/2 edges joining those points (the corresponding "pair group"). Finally, by replacing each x_i by 1+x^i gives G_{n+1}(x). [Harary]
Example, n=2. S_2 = (1/2)*(x_1^2+x_2), x_1*S_2 = (1/2)*(x_1^3+x_1*x_2). The pair group is (1/2)*(x_1^2+x_1*x_2) and so G_3(x) = (1/2)*((1+x)^3+(1+x)*(1+x^2)) = 1+2*x+2*x^2+x^3; set x=1 to get a(2) = 6.
a(n) ~ 2^(n*(n+1)/2)/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

Description corrected by Christian G. Bower
More terms from Vladeta Jovovic, Apr 18 2000
Entry revised by N. J. A. Sloane, Mar 06 2007

A285572 Number of finite sets of pairwise indivisible positive integers with least common multiple n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 9, 1, 1, 2, 2, 2, 6, 1, 2, 2, 4, 1, 9, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 23, 1, 2, 3, 1, 2, 9, 1, 3, 2, 9, 1, 10, 1, 2, 3, 3, 2, 9, 1, 5, 1, 2, 1, 23, 2, 2, 2, 4, 1, 23, 2, 3, 2, 2, 2, 6, 1, 3, 3, 6
Offset: 1

Views

Author

Gus Wiseman, Apr 21 2017

Keywords

Examples

			The a(72)=10 sets are {72}, {8,9}, {8,18}, {8,36}, {9,24}, {18,24}, {24,36}, {6,8,9}, {8,9,12}, {8,12,18}.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[Rest[stableSets[Divisors[n],Divisible]],LCM@@#===n&]],{n,1,nn}]

A304716 Number of integer partitions of n whose distinct parts are connected.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 3, 15, 4, 18, 12, 25, 11, 41, 17, 54, 36, 72, 44, 113, 69, 145, 113, 204, 153, 302, 220, 394, 343, 541, 475, 771, 662, 1023, 968, 1398, 1314, 1929, 1822, 2566, 2565, 3440, 3446, 4677, 4688, 6187, 6407, 8216, 8544, 10975, 11436
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(12) = 15 connected integer partitions and their corresponding connected multiset multisystems (see A112798, A302242) are the following.
                     (12): {{1,1,2}}
                    (6 6): {{1,2},{1,2}}
                    (8 4): {{1,1,1},{1,1}}
                    (9 3): {{2,2},{2}}
                   (10 2): {{1,3},{1}}
                  (4 4 4): {{1,1},{1,1},{1,1}}
                  (6 3 3): {{1,2},{2},{2}}
                  (6 4 2): {{1,2},{1,1},{1}}
                  (8 2 2): {{1,1,1},{1},{1}}
                (3 3 3 3): {{2},{2},{2},{2}}
                (4 4 2 2): {{1,1},{1,1},{1},{1}}
                (6 2 2 2): {{1,2},{1},{1},{1}}
              (4 2 2 2 2): {{1,1},{1},{1},{1},{1}}
            (2 2 2 2 2 2): {{1},{1},{1},{1},{1},{1}}
(1 1 1 1 1 1 1 1 1 1 1 1): {{},{},{},{},{},{},{},{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[Union[#]]]===1&]],{n,30}]

Formula

For n > 1, a(n) = A218970(n) + 1. - Gus Wiseman, Dec 04 2018

Extensions

Name changed to distinguish from A218970 by Gus Wiseman, Dec 04 2018

A322661 Number of graphs with loops spanning n labeled vertices.

Original entry on oeis.org

1, 1, 5, 45, 809, 28217, 1914733, 254409765, 66628946641, 34575388318705, 35680013894626133, 73392583417010454429, 301348381381966079690489, 2471956814761996896091805993, 40530184362443281653842556898237, 1328619783326799871943604598592805525
Offset: 0

Views

Author

Gus Wiseman, Dec 22 2018

Keywords

Comments

The span of a graph is the union of its edges.

Examples

			The a(2) = 5 edge-sets:
  {{1,2}}
  {{1,1},{1,2}}
  {{1,1},{2,2}}
  {{1,2},{2,2}}
  {{1,1},{1,2},{2,2}}
		

Crossrefs

Cf. A000666, A006125, A006129 (loops not allowed), A054921, A062740, A116539, A320461, A322635, A048291 (for directed edgs).

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*2^Binomial[k+1,2],{k,0,n}],{n,10}]
    (* second program *)
    Table[Select[Expand[Product[1+x[i]*x[j],{j,n},{i,j}]],And@@Table[!FreeQ[#,x[i]],{i,n}]&]/.x[_]->1,{n,7}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n,k)*2^binomial(k+1,2)) \\ Andrew Howroyd, Jan 06 2024

Formula

Exponential transform of A062740, if we assume A062740(1) = 1.
Inverse binomial transform of A006125(n+1) = 2^binomial(n+1,2).

A007297 Number of connected graphs on n labeled nodes on a circle with straight-line edges that don't cross.

Original entry on oeis.org

1, 1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, 448771622, 4092553752, 37714212564, 350658882768, 3285490743987, 30989950019532, 294031964658430, 2804331954047160, 26870823304476690, 258548658860327880
Offset: 1

Views

Author

Keywords

Comments

Apart from the initial 1, reversion of g.f. for A162395 (squares with signs): see A263843.

Examples

			G.f. = x*(1 + x + 4*x^2 + 23*x^3 + 156*x^4 + 1162*x^5 + 9192*x^6 + 75819*x^7 + ...).
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A162395, A000290. 4th row of A107111. Row sums of A089434.
See A263843 for a variant.
Cf. A000108 (non-crossing set partitions), A001006, A001187, A054726 (non-crossing graphs), A054921, A099947, A194560, A293510, A323818, A324167, A324169, A324173.

Programs

  • Maple
    A007297:=proc(n) if n = 1 then 1 else add(binomial(3*n - 3, n + j)*binomial(j - 1, j - n + 1), j = n - 1 .. 2*n - 3)/(n - 1); fi; end;
  • Mathematica
    CoefficientList[ InverseSeries[ Series[(x-x^2)/(1+x)^3, {x, 0, 20}], x], x] // Rest (* From Jean-François Alcover, May 19 2011, after PARI prog. *)
    Table[Binomial[3n, 2n+1] Hypergeometric2F1[1-n, n, 2n+2, -1]/n, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse((x-x^2)/(1+x)^3+O(x^(n+2))),n+1)) /* Ralf Stephan */

Formula

Apart from initial term, g.f. is the series reversion of (x-x^2)/(1+x)^3 (A162395). See A263843. - Vladimir Kruchinin, Feb 08 2013
G.f.: (g-z)/z, where g=-1/3+(2/3)*sqrt(1+9z)*sin((1/3)*arcsin((2+27z+54z^2)/2/(1+9*z)^(3/2))). - Emeric Deutsch, Dec 02 2002
a(n) = (1/n)*Sum_{k=0..n} binomial(3n, n-k-1)*binomial(n+k-1, k). - Paul Barry, May 11 2005
a(n) = 4^(n-1)*(Gamma(3*n/2-1)/Gamma(n/2+1)/Gamma(n) -Gamma((3*n-1)/2)/ Gamma( (n+1)/2)/Gamma(n+1)). - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = 4^n * binomial(3*n/2, n/2) / (9*n-6) - 4^(n-1) * binomial(3*(n-1)/2, (n-1)/2 ) / n. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
D-finite with recurrence: n*(n-1)*(3*n-4)*a(n) +36*(n-1)*a(n-1) -12*(3*n-8)*(3*n-1)*(3*n-7)*a(n-2)=0. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = (1/n)*Sum_{k=0..n} C(3n, k)*C(2n-k-2, n-1). - Paul Barry, Sep 27 2005
a(n) ~ (2-sqrt(3)) * 6^n * 3^(n/2) / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2014
a(n) = binomial(3*n,2*n+1)*hypergeom([1-n,n], [2*n+2], -1)/n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = 2*A078531(n) - A085614(n+1). - Vladimir Reshetnikov, Apr 24 2016

Extensions

Better description from Philippe Flajolet, Apr 20 2000
More terms from James Sellers, Aug 21 2000
Definition revised and initial a(1)=1 added by N. J. A. Sloane, Nov 05 2015 at the suggestion of Axel Boldt. Some of the formulas may now need to be adjusted slightly.

A304714 Number of connected strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 5, 2, 5, 5, 6, 5, 10, 6, 12, 12, 13, 14, 21, 17, 23, 26, 30, 31, 46, 38, 51, 55, 61, 70, 87, 85, 102, 116, 128, 138, 171, 169, 204, 225, 245, 272, 319, 334, 383, 429, 464, 515, 593, 629, 715, 790, 861, 950, 1082
Offset: 1

Views

Author

Gus Wiseman, May 17 2018

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices with a common divisor. For example, G({6,14,15,35}) is a 4-cycle. A multiset S is said to be connected if G(S) is a connected graph.

Examples

			The a(19) = 6 strict integer partitions are (19), (9,6,4), (10,5,4), (10,6,3), (12,4,3), (8,6,3,2). Taking the normalized prime factors of each part (see A112798, A302242), we have the following connected multiset multisystems.
       (19): {{8}}
    (9,6,4): {{2,2},{1,2},{1,1}}
   (10,5,4): {{1,3},{3},{1,1}}
   (10,6,3): {{1,3},{1,2},{2}}
   (12,4,3): {{1,1,2},{1,1},{2}}
  (8,6,3,2): {{1,1,1},{1,2},{2},{1}}
		

Crossrefs

The Heinz numbers of these partitions are given by A328513.

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[zsm[#]]===1&]],{n,60}]

A286520 Number of finite connected sets of pairwise indivisible positive integers greater than one with least common multiple n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 5, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 5, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 17, 1, 1, 2, 1, 1, 5, 1, 2, 1, 5, 1, 9, 1, 1, 2, 2, 1, 5, 1, 4, 1, 1, 1, 17, 1, 1, 1
Offset: 2

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.

Examples

			The a(30)=5 sets are: {30}, {6,10}, {6,15}, {10,15}, {6,10,15}.
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Rest[Divisors[n]]],And[!MemberQ[Tuples[#,2],{x_,y_}/;And[x
    				

A134954 Number of "hyperforests" on n labeled nodes, i.e., hypergraphs that have no cycles, assuming that each edge contains at least two vertices.

Original entry on oeis.org

1, 1, 2, 8, 55, 562, 7739, 134808, 2846764, 70720278, 2021462055, 65365925308, 2359387012261, 94042995460130, 4102781803365418, 194459091322828280, 9950303194613104995, 546698973373090998382, 32101070021048906407183, 2006125858248695722280564
Offset: 0

Views

Author

Don Knuth, Jan 26 2008

Keywords

Comments

The part of the name "assuming that each edge contains at least two vertices" is ambiguous. It may mean that not all n vertices have to be covered by some edge of the hypergraph, i.e., it is not necessarily a spanning hyperforest. However it is common to represent uncovered vertices as singleton edges, as in my example. - Gus Wiseman, May 20 2018

Examples

			From _Gus Wiseman_, May 20 2018: (Start)
The a(3) = 8 labeled spanning hyperforests are the following:
{{1,2,3}}
{{1,3},{2,3}}
{{1,2},{2,3}}
{{1,2},{1,3}}
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
(End)
		

References

  • D. E. Knuth: The Art of Computer Programming, Volume 4, Generating All Combinations and Partitions Fascicle 3, Section 7.2.1.4. Generating all partitions. Page 38, Algorithm H. - Washington Bomfim, Sep 25 2008

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; add(Stirling2(n-1,i) *n^(i-1), i=0..n-1) end: B:= proc(n) x-> add(b(k) *x^k/k!, k=0..n) end: a:= n-> coeff(series(exp(B(n)(x)), x, n+1), x,n) *n!: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 09 2008
  • Mathematica
    b[n_] := b[n] = Sum[StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; B[n_][x_] := Sum[b[k] *x^k/k!, {k, 0, n}]; a[0]=1; a[n_] := SeriesCoefficient[ Exp[B[n][x]], {x, 0, n}] *n!; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 13 2015, after Alois P. Heinz *)

Formula

Exponential transform of A030019. - N. J. A. Sloane, Jan 30 2008
Binomial transform of A304911. - Gus Wiseman, May 20 2018
a(n) = Sum of n!*Product_{k=1..n} (A030019(k)/k!)^c_k / (c_k)! over all the partitions of n, c_1 + 2c_2 + ... + nc_n; c_1, c_2, ..., c_n >= 0. - Washington Bomfim, Sep 25 2008
a(n) ~ exp((n+1)/LambertW(1)) * n^(n-2) / (sqrt(1+LambertW(1)) * exp(2*n+2) * (LambertW(1))^n). - Vaclav Kotesovec, Jul 26 2014

A286518 Number of finite connected sets of positive integers greater than one with least common multiple n.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 4, 2, 4, 1, 20, 1, 4, 4, 8, 1, 20, 1, 20, 4, 4, 1, 88, 2, 4, 4, 20, 1, 96, 1, 16, 4, 4, 4, 196, 1, 4, 4, 88, 1, 96, 1, 20, 20, 4, 1, 368, 2, 20, 4, 20, 1, 88, 4, 88, 4, 4, 1, 1824, 1, 4, 20, 32, 4, 96, 1, 20, 4, 96, 1, 1688, 1, 4, 20, 20, 4, 96, 1, 368, 8, 4, 1, 1824, 4, 4, 4, 88, 1, 1824, 4, 20
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2017

Keywords

Comments

Given a finite set S of positive integers greater than one, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that are not relatively prime. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph.
a(n) depends only on prime signature of n (cf. A025487). - Antti Karttunen, Feb 17 2024

Examples

			The a(6)=4 sets are: {6}, {2,6}, {3,6}, {2,3,6}.
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c==={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Rest[Divisors[n]]],zsm[#]==={n}&]],{n,2,20}]
  • PARI
    isconnected(facs) = { my(siz=length(facs)); if(1==siz,1,my(m=matrix(siz,siz,i,j,(gcd(facs[i],facs[j])!=1))^siz); for(n=1,siz,if(0==vecmin(m[n,]),return(0))); (1)); };
    A286518aux(n, parts, from=1, ss=List([])) = { my(k = #parts, s=0, newss); if(lcm(Vec(ss))==n && isconnected(ss), s++); for(i=from, k, newss = List(ss); listput(newss, parts[i]); s += A286518aux(n, parts, i+1, newss)); (s) };
    A286518(n) = if(1==n, n, A286518aux(n, divisors(n))); \\ Antti Karttunen, Feb 17 2024

Formula

From Antti Karttunen, Feb 17 2024: (Start)
a(n) <= A069626(n).
It seems that a(n) >= A318670(n), for all n > 1.
(End)

Extensions

Term a(1)=1 prepended and more terms added by Antti Karttunen, Feb 17 2024
Showing 1-10 of 53 results. Next