cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000273 Number of unlabeled simple digraphs with n nodes.

Original entry on oeis.org

1, 1, 3, 16, 218, 9608, 1540944, 882033440, 1793359192848, 13027956824399552, 341260431952972580352, 32522909385055886111197440, 11366745430825400574433894004224, 14669085692712929869037096075316220928, 70315656615234999521385506555979904091217920
Offset: 0

Views

Author

Keywords

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 651.
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 522.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 225.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 124, Table 5.1.2 and p. 241, Table A4.
  • M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A052283 and of A217654.

Programs

  • Maple
    with(combinat):with(numtheory):
    for n from 0 to 20 do p:=partition(n):
    s:=0:for k from 1 to nops(p) do
    q:=convert(p[k],multiset):
    for i from 1 to n do a(i):=0:od:for i from 1 to nops(q) do a(q[i][1]):=q[i][2]:od:
    c:=1:ord:=1:for i from 1 to n do c:=c*a(i)!*i^a(i): if a(i)<>0 then ord:=lcm(ord,i):fi:od:
    g:=0:for d from 1 to ord do if ord mod d=0 then g1:=0:for del from 1 to d do if del<=n and d mod del=0 then g1:=g1+del*a(del):fi:od:g:=g+phi(ord/d)*g1*(g1-1):fi:od:
    s:=s+2^(g/ord)/c:
    od:
    print(n,s):
    od:
    # Vladeta Jovovic, Jun 06 2006
    # second Maple program:
    b:= proc(n, i, l) `if`(n=0 or i=1, 1/n!*2^((p-> add(p[j]-1+add(
          igcd(p[k], p[j]), k=1..j-1)*2, j=1..nops(p)))([l[], 1$n])),
          add(b(n-i*j, i-1, [l[], i$j])/j!/i^j, j=0..n/i))
        end:
    A000273 := n-> b(n$2, []):
    seq(A000273(n), n=0..20);  # Alois P. Heinz, Sep 04 2019
  • Mathematica
    Table[CycleIndex[PairGroup[SymmetricGroup[n],Ordered],t]/.Table[t[i]->1+x^i,{i,1,n^2}]/.{x->1},{n,1,7}] (* or *)
      Table[GraphPolynomial[n,t,Directed]/.{t->1},{n,1,20}]
    (* Geoffrey Critzer, Mar 08 2011 *)
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[2*GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i-1}] + Total[v-1];
    a[n_] := (s = 0; Do[s += permcount[p]*2^edges[p], {p, IntegerPartitions[n]} ]; s/n!);
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 08 2018, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v) = {sum(i=2, #v, sum(j=1, i-1, 2*gcd(v[i],v[j]))) + sum(i=1, #v, v[i]-1)}
    a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)); s/n!} \\ Andrew Howroyd, Oct 22 2017
    
  • Python
    from math import gcd, factorial
    from sympy.utilities.iterables import partitions
    def permcount(v):
        m, s, k = 1, 0, 0
        for i, t in enumerate(v):
            k = k+1 if i > 0 and t == v[i-1] else 1; m *= t*k; s += t
        return factorial(s)//m
    def edges(v): return sum(sum(2*gcd(v[i], v[j]) for j in range(i)) for i in range(1, len(v))) + sum(vi-1 for vi in v)
    def a(n):
        s = 0
        for p in partitions(n):
            pvec = []
            for i in sorted(p): pvec.extend([i]*p[i])
            s += permcount(pvec)*2**edges(pvec)
        return s//factorial(n)
    print([a(n) for n in range(15)]) # Michael S. Branicky, Nov 14 2022 after Andrew Howroyd
    
  • Python
    from itertools import combinations
    from math import prod, factorial, gcd
    from fractions import Fraction
    from sympy.utilities.iterables import partitions
    def A000273(n): return int(sum(Fraction(1<Chai Wah Wu, Jul 05 2024

Formula

a(n) ~ 2^(n*(n-1))/n! [McIlroy, 1955]. - Vaclav Kotesovec, Dec 19 2016

Extensions

More terms from Vladeta Jovovic, Dec 14 1999