A000274 Number of permutations of length n with 2 consecutive ascending pairs.
0, 0, 1, 3, 18, 110, 795, 6489, 59332, 600732, 6674805, 80765135, 1057289046, 14890154058, 224497707343, 3607998868005, 61576514013960, 1112225784377144, 21197714949305577, 425131949816628507, 8950146311929021210, 197350726178034917670, 4548464355722328578691
Offset: 1
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210 (divided by 2).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..150
- R. Mantaci and F. Rakotondrajao, Exceedingly deranging!, Advances in Appl. Math., 30 (2003), 177-188. [_Emeric Deutsch_, May 25 2009]
Crossrefs
Programs
-
Maple
a:= n->sum((n-1)!*sum((-1)^k/k!/2, j=1..n-1), k=0..n-1): seq(a(n), n=1..23); # Zerinvary Lajos, May 17 2007
-
Mathematica
Table[Subfactorial[n]*n/2, {n, 2, 20}] (* Zerinvary Lajos, Jul 09 2009 *)
Formula
a(n) = (1 + n) a(n - 1) + (3 + n) a(n - 2) + (3 - n) a(n - 3) + (2 - n) a(n - 4).
E.g.f.: x^2/2*exp(-x)/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
a(n) = (n-1)^2/(n-2)*a(n-1)-(-1)^n*(n-1)/2, n>2, a(2)=0. - Vladeta Jovovic, Aug 31 2003
a(n) = (1/2){[n!/e] - [(n-1)!/e]} (conjectured).
a(n) = (n-1)*GAMMA(n,-1)*exp(-1)/2 where GAMMA = incomplete Gamma function. [Mark van Hoeij, Nov 11 2009]
Extensions
Name clarified and offset changed by N. J. A. Sloane, Apr 12 2014
Comments