A010027
Triangle read by rows: T(n,k) is the number of permutations of [n] having k consecutive ascending pairs (0 <= k <= n-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 9, 11, 1, 4, 18, 44, 53, 1, 5, 30, 110, 265, 309, 1, 6, 45, 220, 795, 1854, 2119, 1, 7, 63, 385, 1855, 6489, 14833, 16687, 1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329, 1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457, 1
Offset: 1
Triangle starts:
1;
1, 1;
1, 2, 3;
1, 3, 9, 11;
1, 4, 18, 44, 53;
1, 5, 30, 110, 265, 309;
1, 6, 45, 220, 795, 1854, 2119;
1, 7, 63, 385, 1855, 6489, 14833, 16687;
1, 8, 84, 616, 3710, 17304, 59332, 133496, 148329;
1, 9, 108, 924, 6678, 38934, 177996, 600732, 1334961, 1468457;
...
For n=3, the permutations 123, 132, 213, 231, 312, 321 have respectively 2,0,0,1,1,0 consecutive ascending pairs, so row 3 of the triangle is 3,2,1. - _N. J. A. Sloane_, Apr 12 2014
In the alternative definition, T(4,2)=3 because we have 234.1, 4.123, and 34.12 (the blocks are separated by dots). - _Emeric Deutsch_, May 16 2010
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
A289632 is the analogous triangle with the additional restriction that all consecutive pairs must be isolated, i.e., must not be back-to-back to form longer consecutive sequences.
-
U := proc (n, k) options operator, arrow: factorial(k+1)*binomial(n, k)*(sum((-1)^i/factorial(i), i = 0 .. k+1))/n end proc: for n to 10 do seq(U(n, k), k = 1 .. n) end do; # yields sequence in triangular form; # Emeric Deutsch, May 15 2010
-
t[n_, k_] := Binomial[n, k]*Subfactorial[k+1]/n; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Emeric Deutsch *)
T[0,0]:=0; T[1,1]:=1; T[n_,n_]:=T[n,n]=(n-1)T[n-1,n-1]+(n-2)T[n-2,n-2]; T[n_,k_]:=T[n,k]=T[n-1,k] (n-1)/(n-k); Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)
Original definition from David, Kendall and Barton restored by
N. J. A. Sloane, Apr 12 2014
A046739
Triangle read by rows, related to number of permutations of [n] with 0 successions and k rises.
Original entry on oeis.org
0, 1, 1, 1, 1, 7, 1, 1, 21, 21, 1, 1, 51, 161, 51, 1, 1, 113, 813, 813, 113, 1, 1, 239, 3361, 7631, 3361, 239, 1, 1, 493, 12421, 53833, 53833, 12421, 493, 1, 1, 1003, 42865, 320107, 607009, 320107, 42865, 1003, 1, 1, 2025, 141549, 1704693, 5494017
Offset: 1
Triangle starts:
0;
1;
1, 1;
1, 7, 1;
1, 21, 21, 1;
1, 51, 161, 51, 1;
1, 113, 813, 813, 113, 1;
...
From _Peter Luschny_, Sep 17 2021: (Start)
The triangle shows the coefficients of the following bivariate polynomials:
[1] 0;
[2] x*y;
[3] x^2*y + x*y^2;
[4] x^3*y + 7*x^2*y^2 + x*y^3;
[5] x^4*y + 21*x^3*y^2 + 21*x^2*y^3 + x*y^4;
[6] x^5*y + 51*x^4*y^2 + 161*x^3*y^3 + 51*x^2*y^4 + x*y^5;
[7] x^6*y + 113*x^5*y^2 + 813*x^4*y^3 + 813*x^3*y^4 + 113*x^2*y^5 + x*y^6;
...
These polynomials are the permanents of the n X n matrices with all entries above the main antidiagonal set to 'x' and all entries below the main antidiagonal set to 'y'. The main antidiagonals consist only of zeros. Substituting x <- 1 and y <- -1 generates the Euler secant numbers A122045. (Compare with A081658.)
(End)
- Robert Israel, Table of n, a(n) for n = 1..10012 (rows 0 to 142, flattened)
- L. Carlitz, Richard Scoville, and Theresa Vaughan, Enumeration of pairs of permutations and sequences, Bulletin of the American Mathematical Society 80.5 (1974): 881-884. [Annotated scanned copy]
- L. Carlitz, N. J. A. Sloane, and C. L. Mallows, Correspondence, 1975
- N. Gustafsson and L. Solus. Derangements, Ehrhart theory, and local h-polynomials, arXiv:1807.05246 [math.CO], 2018.
- R. Mantaci and F. Rakotondrajao, Exceedingly deranging!, Advances in Appl. Math., 30 (2003), 177-188. [_Emeric Deutsch_, May 25 2009]
- Lili Mu and Volkmar Welker, On a question about real rooted polynomials and f-polynomials of simplicial complexes, arXiv:2503.24076 [math.CO], 2025. See p. 8.
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 19 (1968), 8-16. [Annotated scanned copy]
- D. P. Roselle, Permutations by number of rises and successions, Proc. Amer. Math. Soc., 20 (1968), 8-16.
- R. P. Stanley, Subdivisions and local h-vectors, J. Amer. Math. Soc., 5 (1992), 805-851.
- John D. Wiltshire-Gordon, Alexander Woo, and Magdalena Zajaczkowska, Specht Polytopes and Specht Matroids, arXiv:1701.05277 [math.CO], 2017. [See Conjecture 6.2]
-
G := (1-t)*exp(-t*z)/(1-t*exp((1-t)*z)): Gser := simplify(series(G, z = 0, 15)): for n to 13 do P[n] := sort(expand(factorial(n)*coeff(Gser, z, n))) end do: 0; for n to 11 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form # Emeric Deutsch, May 25 2009
-
max = 12; f[t_, z_] := (1-t)*(Exp[-t*z]/(1 - t*Exp[(1-t)*z])); se = Series[f[t, z], {t, 0, max}, {z, 0, max}];
coes = Transpose[ #*Range[0, max]! & /@ CoefficientList[se, {t, z}]]; Join[{0}, Flatten[ Table[ coes[[n, k]], {n, 2, max}, {k, 2, n-1}]]] (* Jean-François Alcover, Oct 24 2011, after g.f. *)
E1[n_ /; n >= 0, 0] = 1; (* E1(n,k) are the Eulerian numbers *)
E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (n-k) E1[n-1, k-1] + (k+1) E1[n-1, k];
T[n_, k_] := Sum[Binomial[-j-1, -n-1] E1[j, k], {j, 0, n}];
Table[T[n, k], {n, 1, 100}, {k, 1, n-1}] /. {} -> {0} // Flatten (* Jean-François Alcover, Oct 31 2020, after Peter Luschny in A271697 *)
Table[Expand[n!Factor[SeriesCoefficient[(x-y)/(x Exp[y t]-y Exp[x t]),{t,0,n}]]],{n,0,12}]//TableForm (* Mamuka Jibladze, Nov 26 2024 *)
-
T(n)={my(x='x+O('x^(n+1))); concat([[0]], [Vecrev(p/y) | p<-Vec(-1+serlaplace((y-1)/(y*exp(x)-exp(x*y))))])}
{ my(A=T(10));for(i=1,#A,print(A[i])) } \\ Andrew Howroyd, Nov 13 2024
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
A123513
Triangle read by rows: T(n,k) is the number of permutations of [n] having k small descents (n >= 1; 0 <= k <= n-1). A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) = 1.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 11, 9, 3, 1, 53, 44, 18, 4, 1, 309, 265, 110, 30, 5, 1, 2119, 1854, 795, 220, 45, 6, 1, 16687, 14833, 6489, 1855, 385, 63, 7, 1, 148329, 133496, 59332, 17304, 3710, 616, 84, 8, 1, 1468457, 1334961, 600732, 177996, 38934, 6678, 924, 108, 9, 1
Offset: 1
Triangle starts:
1;
1, 1;
3, 2, 1;
11, 9, 3, 1;
53, 44, 18, 4, 1;
309, 265, 110, 30, 5, 1;
2119, 1854, 795, 220, 45, 6, 1;
...
T(4,2)=3 because we have 14/3/2, 2/14/3 and 3/2/14 (the unit descents are shown by a /).
T(4,2)=3 because we have 14/3/2, 2/14/3 and 3/2/14 (the small descents are shown by a /).
- Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 179, Table 5.4 for S_{n,k} (without row n=1 and column k=0).
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263 (Table 7.5.1).
- Alois P. Heinz, Rows n = 1..150, flattened
- Bhadrachalam Chitturi and Krishnaveni K S, Adjacencies in Permutations, arXiv preprint arXiv:1601.04469 [cs.DM], 2016. See Table 0.
- FindStat - Combinatorial Statistic Finder, The number of adjacencies of a permutation
- Sergey Kitaev and Philip B. Zhang, Distributions of mesh patterns of short lengths, arXiv:1811.07679 [math.CO], 2018.
- J. Liese and J. Remmel, Q-analogues of the number of permutations with k-excedances, PU. M. A. Vol. 21 (2010), No. 2, pp. 285-320 (see E_{n,1}(x) in Table 1 p. 291).
- F. Poussin, Énumération des permutations par nombre de marches, RAIRO, Informatique théorique, 13 no. 3, 1979, p. 251-255.
-
G:=exp(-x+t*x)/(1-x)^2: Gser:=simplify(series(G,x=0,15)): for n from 0 to 10 do P[n+1]:=sort(n!*coeff(Gser,x,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=0..n-1) od; # yields sequence in triangular form
-
Needs["Combinatorica`"];
Table[Map[Count[#,1]&,Map[Differences,Permutations[n]]]//Distribution,{n,1,10}]//Grid
(* Geoffrey Critzer, Dec 15 2012 *)
T[n_, k_] := (n-1)! SeriesCoefficient[Exp[-x + t x]/(1-x)^2, {x, 0, n-1}, {t, 0, k}];
Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Sep 25 2019 *)
T[1,1]:=1;T[0,1]:=0;T[n_,1]:=T[n,1]=(n-1)T[n-1,1]+(n-2)T[n-2,1];T[n_,k_]:=T[n,k]=T[n-1, k-1](n-1)/(k-1);Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)
A000313
Number of permutations of length n with 3 consecutive ascending pairs.
Original entry on oeis.org
0, 0, 0, 1, 4, 30, 220, 1855, 17304, 177996, 2002440, 24474285, 323060540, 4581585866, 69487385604, 1122488536715, 19242660629360, 348933579412440, 6673354706262864, 134252194678935321, 2834212998777523380, 62651024183503148470, 1447238658638922729580
Offset: 1
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
series(hypergeom([2,4],[],x/(x+1))/(x+1)^4, x=0, 30); # Mark van Hoeij, Nov 07 2011
a := n -> simplify(hypergeom([4-n,2],[],1))*(-1)^n*(n-1)*(n-2)*(n-3)/6: seq(a(n), n=1..23); # Peter Luschny, Nov 19 2014
-
Table[(n*(n + 1)!/6)*Sum[(-1)^k/k!, {k, 0, n}], {n, -1, 25}] (* T. D. Noe, Jun 19 2012 *)
a[1]:=0; a[n_Integer/;n>=2]:=(n-2) (n-1) Subfactorial[n-2]/6 (* Todd Silvestri, Nov 15 2014 *)
-
a = lambda n: (n-2)*(n-1)*sloane.A000166(n-2)/6 if n>2 else 0
[a(n) for n in range(1,24)] # Peter Luschny, Nov 19 2014
A001260
Number of permutations of length n with 4 consecutive ascending pairs.
Original entry on oeis.org
0, 0, 0, 0, 1, 5, 45, 385, 3710, 38934, 444990, 5506710, 73422855, 1049946755, 16035550531, 260577696015, 4489954146860, 81781307674780, 1570201107355980, 31698434854748604, 671260973394676605, 14879618243581997745
Offset: 1
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a:=n->sum((n+2)!*sum((-1)^k/k!/4!, j=1..n), k=0..n): seq(a(n), n=2..19); # Zerinvary Lajos, May 25 2007
series(hypergeom([2, 5],[],x/(x+1))/(x+1)^5,x=0,30); # Mark van Hoeij, Nov 07 2011
-
Drop[CoefficientList[Series[x^4/4! Exp[-x]/(1 - x)^2, {x, 0, 20}], x] Range[0, 20]!, 4] (* Vaclav Kotesovec, Mar 26 2014 *)
A001261
Number of permutations of length n with 5 consecutive ascending pairs.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 6, 63, 616, 6678, 77868, 978978, 13216104, 190899423, 2939850914, 48106651593, 833848627248, 15265844099324, 294412707629208, 5966764207952724, 126793739418994416, 2819296088257641741, 65470320271760790078
Offset: 1
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a:=n->sum((n+3)!*sum((-1)^k/k!/5!, j=1..n), k=0..n): seq(a(n), n=2..19); # Zerinvary Lajos, May 25 2007
-
Range[0, 30]! CoefficientList[Series[x^5/5!*Exp[-x]/(1 - x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 13 2014 *)
A086325
Let u(1)=0, u(2)=1, u(k)=u(k-1)+u(k-2)/(k-2); then a(n)=n!*u(n).
Original entry on oeis.org
0, 2, 6, 36, 220, 1590, 12978, 118664, 1201464, 13349610, 161530270, 2114578092, 29780308116, 448995414686, 7215997736010, 123153028027920, 2224451568754288, 42395429898611154, 850263899633257014, 17900292623858042420, 394701452356069835340, 9096928711444657157382, 218739785834282892557026
Offset: 1
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263, Table 7.5.1, row 3.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210, Table 3, Three-line Latin rectangles.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
-
a:=n->n!*add((-1)^k/k!, k=0..n): seq(a(n)*n, n=1..19); # Zerinvary Lajos, Dec 18 2007
with (combstruct):with (combinat):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*fibonacci(2,n), n=1..19); # Zerinvary Lajos, Jun 11 2008
with (combstruct):a:=proc(m) [ZL, {ZL=Set(Cycle(Z, card>=m))}, labeled]; end: ZLL:=a(2):seq(count(ZLL, size=n)*n, n=1..19); # Zerinvary Lajos, Jun 11 2008
-
Table[Subfactorial[n]*n, {n, 1, 19}] (* Zerinvary Lajos, Jul 09 2009 *)
-
a(n) = n*((n! + 1)\exp(1)); \\ Indranil Ghosh, Apr 13 2017
A345462
Triangle T(n,k) (n >= 1, 0 <= k <= n-1) read by rows: number of distinct permutations after k steps of the "first transposition" algorithm.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 24, 13, 4, 1, 120, 67, 23, 5, 1, 720, 411, 146, 36, 6, 1, 5040, 2921, 1067, 272, 52, 7, 1, 40320, 23633, 8800, 2311, 456, 71, 8, 1, 362880, 214551, 81055, 21723, 4419, 709, 93, 9, 1, 3628800, 2160343, 825382, 224650, 46654, 7720, 1042, 118, 10, 1
Offset: 1
Triangle begins:
1;
2, 1;
6, 3, 1;
24, 13, 4, 1;
120, 67, 23, 5, 1;
720, 411, 146, 36, 6, 1;
5040, 2921, 1067, 272, 52, 7, 1;
40320, 23633, 8800, 2311, 456, 71, 8, 1;
...
- D. E. Knuth, The Art of Computer Programming, Vol. 3 / Sorting and Searching, Addison-Wesley, 1973.
Cf.
A107111 a triangle with some common parts.
-
b:= proc(n, k) option remember; (k+1)!*
binomial(n, k)*add((-1)^i/i!, i=0..k+1)/n
end:
T:= proc(n, k) option remember;
`if`(k=0, n!, T(n, k-1)-b(n, n-k+1))
end:
seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Aug 11 2021
-
b[n_, k_] := b[n, k] = (k+1)!*Binomial[n, k]*Sum[(-1)^i/i!, {i, 0, k+1}]/n;
T[n_, k_] := T[n, k] = If[k == 0, n!, T[n, k-1] - b[n, n-k+1]];
Table[Table[T[n, k], {k, 0, n - 1}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 06 2022, after Alois P. Heinz *)
A271706
Triangle read by rows: T(n, k) = Sum_{j=0..n} C(-j-1, -n-1)*L(j, k), L the unsigned Lah numbers A271703, for n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, -1, 1, 1, 0, 1, -1, 3, 3, 1, 1, 8, 18, 8, 1, -1, 45, 110, 70, 15, 1, 1, 264, 795, 640, 195, 24, 1, -1, 1855, 6489, 6335, 2485, 441, 35, 1, 1, 14832, 59332, 67984, 32550, 7504, 868, 48, 1, -1, 133497, 600732, 789852, 445914, 126126, 19068, 1548, 63, 1
Offset: 0
Triangle starts:
[ 1]
[-1, 1]
[ 1, 0, 1]
[-1, 3, 3, 1]
[ 1, 8, 18, 8, 1]
[-1, 45, 110, 70, 15, 1]
[ 1, 264, 795, 640, 195, 24, 1]
[-1, 1855, 6489, 6335, 2485, 441, 35, 1]
-
L := (n, k) -> `if`(k<0 or k>n, 0, (n-k)!*binomial(n, n-k)*binomial(n-1, n-k)):
T := (n, k) -> add(L(j, k)*binomial(-j-1,-n-1), j=0..n):
seq(seq(T(n, k), k=0..n), n=0..9);
# Or:
T := (n, k) -> (-1)^(n-k)*binomial(n, k)*hypergeom([k-n, k], [], 1):
for n from 0 to 8 do seq(simplify(T(n, k)), k=0..n) od; # Peter Luschny, Jun 25 2025
Showing 1-9 of 9 results.
Comments