A000278 a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
0, 1, 1, 2, 3, 7, 16, 65, 321, 4546, 107587, 20773703, 11595736272, 431558332068481, 134461531248108526465, 186242594112190847520182173826, 18079903385772308300945867582153787570051, 34686303861638264961101080464895364211215702792496667048327
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..25
- W. Duke, Stephen J. Greenfield, and Eugene R. Speer, Properties of a Quadratic Fibonacci Recurrence, J. Integer Seq. 1 (1998), Article #98.1.8.
Programs
-
Magma
[n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // Vincenzo Librandi, Dec 17 2015
-
Maple
A000278 := proc(n) option remember; if n <= 1 then n else A000278(n-2)^2+A000278(n-1); fi; end;
-
Mathematica
Join[{a=0,b=1},Table[c=a^2+b;a=b;b=c,{n,16}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *) RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* Robert G. Wilson v, Apr 14 2017 *)
-
PARI
a(n)=if(n<2,n>0,a(n-1)+a(n-2)^2)
-
Sage
def A000278(): x, y = 0, 1 while True: yield x x, y = x + y, x * x a = A000278(); [next(a) for i in range(18)] # Peter Luschny, Dec 17 2015
Formula
a(2n) is asymptotic to A^(sqrt(2)^(2n-1)) where A=1.668751581493687393311628852632911281060730869124873165099170786836201970866312366402366761987... and a(2n+1) to B^(sqrt(2)^(2n)) where B=1.693060557587684004961387955790151505861127759176717820241560622552858106116817244440438308887... See reference for proof. - Benoit Cloitre, May 03 2003
Extensions
Name edited by Petros Hadjicostas, Nov 03 2019