cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000287 Number of rooted polyhedral graphs with n edges.

Original entry on oeis.org

1, 0, 4, 6, 24, 66, 214, 676, 2209, 7296, 24460, 82926, 284068, 981882, 3421318, 12007554, 42416488, 150718770, 538421590, 1932856590, 6969847486, 25237057110, 91729488354, 334589415276, 1224445617889, 4494622119424
Offset: 6

Views

Author

Keywords

Comments

a(n) appears to be odd if and only if n = 2^k - 2 for some integer k >= 3. - Lewis Chen, May 05 2019

Examples

			G.f. = x^6 + 4*x^8 + 6*x^9 + 24*x^10 + 66*x^11 + 214*x^12 + 676*x^13 + ...
		

References

  • Handbook of Combinatorics, North-Holland '95, p. 892. (Gives different last term)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, Three-connected planar maps. Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971), pp. 43--52. Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971. MR0335323 (49 #105). - From N. J. A. Sloane, Jun 05 2012

Crossrefs

Cf. A000256.

Programs

  • Mathematica
    a[6] = 1; a[n_] := a[n] = ((9*(5 - 3*n)*n - 16)*a[n-1]*((n-1)!)^2 + 2*((-1)^n*(9*n*(3*n - 17) + 160)*((n-1)!)^2 + ((2*n - 2)!)))/(2*(9*n*(3*n - 11) + 88)*((n-1)!)^2); Table[ a[n], {n, 6, 31}] (* Jean-François Alcover, Oct 04 2011, after formula *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+5)));
      Vec(x^2 - 2*x^3/(1+x) + x*(2*x^2-10*x-1+(1-4*x)^(3/2))/(2*(x+2)^3));
    };
    seq(26)
    \\ test: y=Ser(seq(101))*x^6; 0 == x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6
    \\ Gheorghe Coserea, Sep 27 2018

Formula

a(n) = b(n-1) + 2*(-1)^n, n >= 4, where b(3)=2, b(n) = (2*(2*n)!/(n!)^2 - (27*n^2+9*n-2)*b(n-1)) / (54*n^2-90*n+32). - Sean A. Irvine, Apr 14 2010
(n - 1)*a(n) = ((3/2)*n - 21/2)*a(n-1) + (8*n - 36)*a(n-2) + ((15/2)*n - 63/2)*a(n-3) + (2*n - 7)*a(n-4). - Simon Plouffe, Feb 09 2012 [Corrected by Matthew House, Sep 03 2024]
Liu Yanpei gives another recurrence. - N. J. A. Sloane, Mar 28 2012
a(n) ~ 2^(2*n+1)/(3^5*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Jul 19 2013
From Gheorghe Coserea, Apr 15 2017: (Start)
G.f.: x^2 - 2*x^3/(1+x) + x*(2*x^2-10*x-1+(1-4*x)^(3/2))/(2*(x+2)^3).
0 = x*(x+1)^2*(x+2)*(4*x-1)*y' + 2*(x^2-11*x+1)*(x+1)^2*y + 10*x^6, where y is the g.f. (End)

Extensions

More terms from Sean A. Irvine, Apr 14 2010
Librandi b-file verified by N. J. A. Sloane, Mar 29 2012