cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000289 A nonlinear recurrence: a(n) = a(n-1)^2 - 3*a(n-1) + 3 (for n>1).

Original entry on oeis.org

1, 4, 7, 31, 871, 756031, 571580604871, 326704387862983487112031, 106735757048926752040856495274871386126283608871, 11392521832807516835658052968328096177131218666695418950023483907701862019030266123104859068031
Offset: 0

Views

Author

Keywords

Comments

An infinite coprime sequence defined by recursion. - Michael Somos, Mar 14 2004
This is the special case k=3 of sequences with exact mutual k-residues. In general, a(1)=k+1 and a(n)=min{m | m>a(n-1), mod(m,a(i))=k, i=1,...,n-1}. k=1 gives Sylvester's sequence A000058 and k=2 Fermat sequence A000215. - Seppo Mustonen, Sep 04 2005

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000058.

Programs

  • Mathematica
    Join[{1}, RecurrenceTable[{a[n] == a[n-1]^2 - 3*a[n-1] + 3, a[1] == 4}, a, {n, 1, 9}]] (* Jean-François Alcover, Feb 06 2016 *)
  • PARI
    a(n)=if(n<2,max(0,1+3*n),a(n-1)^2-3*a(n-1)+3)

Formula

a(n) = A005267(n) + 2 (for n>0).
a(n) = ceiling(c^(2^n)) + 1 where c = A077141. - Benoit Cloitre, Nov 29 2002
For n>0, a(n) = 3 + Product_{i=0..n-1} a(i). - Vladimir Shevelev, Dec 08 2010