cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A000106 2nd power of rooted tree enumerator; number of linear forests of 2 rooted trees.

Original entry on oeis.org

1, 2, 5, 12, 30, 74, 188, 478, 1235, 3214, 8450, 22370, 59676, 160140, 432237, 1172436, 3194870, 8741442, 24007045, 66154654, 182864692, 506909562, 1408854940, 3925075510, 10959698606, 30665337738, 85967279447, 241433975446, 679192039401, 1913681367936, 5399924120339
Offset: 2

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column d=1 of A335362.
Column 2 of A339067.
Cf. A000081, A000242, A000300, A000343, A000395, A027852 (forests of 2 rooted trees).

Programs

  • Haskell
    a000106 n = a000106_list !! (n-2)
    a000106_list = drop 2 $ conv a000081_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 17 2013
  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-1)^2, x=0, n+1), x,n): seq(a(n), n=2..35); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    <Jean-François Alcover, Nov 02 2011 *)
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := SeriesCoefficient[B[n-1]^2, {x, 0, n}]; Table[a[n], {n, 2, 35}] (* Jean-François Alcover, Dec 01 2016, after Alois P. Heinz *)

Formula

Self-convolution of rooted trees A000081.
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = 0.87984802514205060808180678... . - Vaclav Kotesovec, Sep 11 2014
In the asymptotics above the constant c = 2 * A187770. - Vladimir Reshetnikov, Aug 13 2016

Extensions

More terms from Christian G. Bower, Nov 15 1999

A339067 Triangle read by rows: T(n,k) is the number of linear forests with n nodes and k rooted trees.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 9, 12, 9, 4, 1, 20, 30, 25, 14, 5, 1, 48, 74, 69, 44, 20, 6, 1, 115, 188, 186, 133, 70, 27, 7, 1, 286, 478, 503, 388, 230, 104, 35, 8, 1, 719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1, 1842, 3214, 3651, 3168, 2200, 1236, 560, 200, 54, 10, 1
Offset: 1

Views

Author

Andrew Howroyd, Dec 03 2020

Keywords

Comments

T(n,k) is the number of trees with n nodes rooted at two noninterchangeable nodes at a distance k-1 from each other.
Also the convolution triangle of A000081. - Peter Luschny, Oct 07 2022

Examples

			Triangle begins:
    1;
    1,    1;
    2,    2,    1;
    4,    5,    3,    1;
    9,   12,    9,    4,   1;
   20,   30,   25,   14,   5,   1;
   48,   74,   69,   44,  20,   6,   1;
  115,  188,  186,  133,  70,  27,   7,  1;
  286,  478,  503,  388, 230, 104,  35,  8, 1;
  719, 1235, 1353, 1116, 721, 369, 147, 44, 9, 1;
  ...
		

Crossrefs

Columns 1..6 are A000081, A000106, A000242, A000300, A000343, A000395.
Row sums are A000107.
T(2n-1,n) gives A339440.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, n, (add(add(d*b(d),
          d=numtheory[divisors](j))*b(n-j), j=1..n-1))/(n-1))
        end:
    T:= proc(n, k) option remember; `if`(k=1, b(n), (t->
          add(T(j, t)*T(n-j, k-t), j=1..n-1))(iquo(k, 2)))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12);  # Alois P. Heinz, Dec 04 2020
    # Using function PMatrix from A357368. Adds row and column for n, k = 0.
    PMatrix(10, A000081); # Peter Luschny, Oct 07 2022
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, (Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n - j], {j, 1, n - 1}])/(n - 1)];
    T[n_, k_] := T[n, k] = If[k == 1, b[n], With[{t = Quotient[k, 2]}, Sum[T[j, t]*T[n - j, k - t], {j, 1, n - 1}]]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jan 03 2021, after Alois P. Heinz *)
  • PARI
    \\ TreeGf is A000081.
    TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    ColSeq(n,k)={my(t=TreeGf(max(0,n+1-k))); Vec(t^k, -n)}
    M(n, m=n)=Mat(vector(m, k, ColSeq(n,k)~))
    { my(T=M(12)); for(n=1, #T~, print(T[n,1..n])) }

Formula

G.f. of k-th column: t(x)^k where t(x) is the g.f. of A000081.
Sum_{k=1..n} k * T(n,k) = A038002(n). - Alois P. Heinz, Dec 04 2020

A000242 3rd power of rooted tree enumerator; number of linear forests of 3 rooted trees.

Original entry on oeis.org

1, 3, 9, 25, 69, 186, 503, 1353, 3651, 9865, 26748, 72729, 198447, 543159, 1491402, 4107152, 11342826, 31408719, 87189987, 242603970, 676524372, 1890436117, 5292722721, 14845095153, 41708679697, 117372283086, 330795842217
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-2)^3, x=0, n+1), x,n): seq(a(n), n=3..29); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    max = 29; b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[ b[n+1-j*k], {j, 1, Quotient[n, k]}]; f[x_] := Sum[ b[k]*x^k, {k, 0, max}]; Drop[ CoefficientList[ Series[f[x]^3, {x, 0, max}], x], 3] (* Jean-François Alcover, Oct 25 2011, after Alois P. Heinz *)

Formula

G.f.: B(x)^3 where B(x) is g.f. of A000081.
a(n) ~ 3 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021

Extensions

More terms from Christian G. Bower, Nov 15 1999

A000300 4th power of rooted tree enumerator: linear forests of 4 rooted trees.

Original entry on oeis.org

1, 4, 14, 44, 133, 388, 1116, 3168, 8938, 25100, 70334, 196824, 550656, 1540832, 4314190, 12089368, 33911543, 95228760, 267727154, 753579420, 2123637318, 5991571428, 16923929406, 47857425416, 135478757308, 383929643780, 1089118243128, 3092612497260
Offset: 4

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4, x=0, n+1), x,n): seq(a(n), n=4..30); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    b[n_] := b[n] = If[ n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[ b[n + 1 - j*k], {j, 1, n/k}]; bb[n_] := bb[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[ Series[ bb[n - 3]^4, {x, 0, n + 1}], x, n]; Table[a[n], {n, 4, 31}] (* Jean-François Alcover, Jan 25 2013, translated from Alois P. Heinz's Maple program *)

Formula

G.f.: B(x)^4 where B(x) is g.f. of A000081.
a(n) ~ 4 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021

Extensions

More terms from Christian G. Bower, Nov 15 1999

A000343 5th power of rooted tree enumerator; number of linear forests of 5 rooted trees.

Original entry on oeis.org

1, 5, 20, 70, 230, 721, 2200, 6575, 19385, 56575, 163952, 472645, 1357550, 3888820, 11119325, 31753269, 90603650, 258401245, 736796675, 2100818555, 5990757124, 17087376630, 48753542665, 139155765455, 397356692275, 1135163887190, 3244482184720, 9277856948255
Offset: 5

Views

Author

Keywords

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n,k) option remember; add(b(n+1-j*k), j=1..iquo(n,k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-4)^5, x=0, n+1), x,n): seq(a(n), n=5..29); # Alois P. Heinz, Aug 21 2008
  • Mathematica
    b[n_] := b[n] = If[n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[b[n+1-j*k], {j, 1, Quotient[n, k]}]; B[n_] := B[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[Series[B[n-4]^5, {x, 0, n+1}], x, n]; Table[a[n], {n, 5, 32}] (* Jean-François Alcover, Mar 05 2014, after Alois P. Heinz *)

Formula

G.f.: B(x)^5 where B(x) is g.f. of A000081.
a(n) ~ 5 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021

Extensions

More terms from Christian G. Bower, Nov 15 1999
Showing 1-5 of 5 results.