A000415 Numbers that are the sum of 2 but no fewer nonzero squares.
2, 5, 8, 10, 13, 17, 18, 20, 26, 29, 32, 34, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 136, 137, 145, 146, 148, 149, 153, 157, 160, 162, 164, 170, 173, 178, 180, 181
Offset: 1
References
- E. Grosswald, Representation of Integers as Sums of Squares, Springer-Verlag, New York Inc., (1985), p.15. - Ant King, Nov 02 2010
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- R. K. Guy, Every number is expressible as the sum of how many polygonal numbers?, Amer. Math. Monthly 101 (1994), 169-172. - _Ant King_, Nov 02 2010
- Eric Weisstein's World of Mathematics, Square Number
- Index entries for sequences related to sums of squares
Programs
-
Mathematica
c = {}; Do[Do[k = a^2 + b^2; If[IntegerQ[Sqrt[k]], Null, AppendTo[c,k]], {a, 1, 100}], {b, 1, 100}]; Union[c] (* Artur Jasinski, Oct 25 2007 *) Select[Range[181],Length[PowersRepresentations[ #,2,2]]>0 && !IntegerQ[Sqrt[ # ]] &] (* Ant King, Nov 02 2010 *)
-
PARI
is(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); !issquare(n) \\ Charles R Greathouse IV, Feb 07 2017
-
Python
from itertools import count, islice from sympy import factorint def A000415_gen(startvalue=2): # generator of terms >= startvalue for n in count(max(startvalue,2)): f = factorint(n).items() if any(e&1 for p,e in f if p&3<3) and not any(e&1 for p,e in f if p&3==3): yield n A000415_list = list(islice(A000415_gen(),20)) # Chai Wah Wu, Aug 01 2023
Formula
Extensions
More terms from Arlin Anderson (starship1(AT)gmail.com)
Comments