cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000430 Primes and squares of primes.

Original entry on oeis.org

2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223
Offset: 1

Views

Author

R. Muller

Keywords

Comments

Also numbers n such that the product of proper divisors is < n.
See A050216 for lengths of blocks of consecutive primes. - Reinhard Zumkeller, Sep 23 2011
Numbers q > 1 such that d(q) < 4. Numbers k such that the number of ways of writing k = m + t is equal to the number of ways of writing k = r*s, where m|t and r|s. - Juri-Stepan Gerasimov, Oct 14 2017
Called multiplicatively deficient numbers by Chau (2004). - Amiram Eldar, Jun 29 2022

References

  • F. Smarandache, Definitions solved and unsolved problems, conjectures and theorems in number theory and geometry, edited by M. Perez, Xiquan Publishing House 2000
  • F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.

Crossrefs

Programs

  • Haskell
    a000430 n = a000430_list !! (n-1)
    a000430_list = m a000040_list a001248_list where
       m (x:xs) (y:ys) | x < y = x : m xs (y:ys)
                       | x > y = y : m (x:xs) ys
    -- Reinhard Zumkeller, Sep 23 2011
    
  • Mathematica
    nn = 223; t = Union[Prime[Range[PrimePi[nn]]], Prime[Range[PrimePi[Sqrt[nn]]]]^2] (* T. D. Noe, Apr 11 2011 *)
    Module[{upto=250,prs},prs=Prime[Range[PrimePi[upto]]];Select[Join[ prs,prs^2], #<=upto&]]//Sort (* Harvey P. Dale, Oct 08 2016 *)
  • PARI
    is(n)=isprime(n) || (issquare(n,&n) && isprime(n)) \\ Charles R Greathouse IV, Sep 04 2013
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A000430(n):
        def f(x): return n+x-primepi(x)-primepi(isqrt(x))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m) # Chai Wah Wu, Aug 09 2024

Formula

A084114(a(n)) = 0, see also A084110. - Reinhard Zumkeller, May 12 2003
A109810(a(n)) = 2. - Reinhard Zumkeller, May 24 2010
A010051(a(n)) + A010055(a(n))*A064911(a(n)) = 1;
A056595(a(n)) = 1. - Reinhard Zumkeller, Aug 15 2011
A032741(a(n)) = A046951(a(n)); A293575(a(n)) = 0. - Juri-Stepan Gerasimov, Oct 14 2017
The number of terms not exceeding x is N(x) ~ (x + 2*sqrt(x))/log(x) (Chau, 2004). - Amiram Eldar, Jun 29 2022