cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000534 Numbers that are not the sum of 4 nonzero squares.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41, 56, 96, 128, 224, 384, 512, 896, 1536, 2048, 3584, 6144, 8192, 14336, 24576, 32768, 57344, 98304, 131072, 229376, 393216, 524288, 917504, 1572864, 2097152, 3670016, 6291456, 8388608, 14680064
Offset: 1

Views

Author

Keywords

Comments

For n > 15, a(n) = A006431(n-1). - Thomas Ordowski, Nov 18 2012

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 140.
  • L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 302.
  • E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985, Theorem 3, pp. 74-75.

Crossrefs

Cf. A123069, A000414 (complement).

Programs

  • Mathematica
    q=22;lst={};Do[Do[Do[Do[z=a^2+b^2+c^2+d^2;If[z<=q^2+3,AppendTo[lst,z]],{d,q}],{c,q}],{b,q}],{a,q}];lst1=Union@lst lst={};Do[AppendTo[lst,n],{n,q^2+3}];lst2=lst Complement[lst2,lst1] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2010 *)
    Join[{0,1,2,3,5,6,8,9,11,14,17,24,29,32,41}, LinearRecurrence[{0, 0, 4}, {56, 96, 128}, 30]] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    for(n=1,224,if(sum(a=1,n,sum(b=1,a,sum(c=1,b,sum(d=1,c,if(a^2+b^2+c^2+d^2-n,0,1)))))==0,print1(n,",")))
    
  • PARI
    {a(n)=if( n<2, 0, n<16, [1, 2, 3, 5, 6, 8, 9, 11, 14, 17, 24, 29, 32, 41][n-1], [4, 7, 12][n%3+1] * 2^(n\3*2-7))}; /* Michael Somos, Apr 23 2006 */
    
  • PARI
    is(n)=my(k=if(n,n/4^valuation(n,4),2)); k==2 || k==6 || k==14 || setsearch([0, 1, 3, 5, 9, 11, 17, 29, 41], n) \\ Charles R Greathouse IV, Sep 03 2014
    
  • Python
    from itertools import count, islice
    def A000534_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:n in {0, 1, 3, 5, 9, 11, 17, 29, 41} or n>>((~n&n-1).bit_length()&-2) in {2,6,14},count(max(startvalue,0)))
    A000534_list = list(islice(A000534_gen(),30)) # Chai Wah Wu, Jul 09 2022

Formula

Consists of the numbers 0, 1, 3, 5, 9, 11, 17, 29, 41, 2*4^m, 6*4^m and 14*4^m (m >= 0). Compare A123069.
From 224 on, a(n) = 4*a(n-3).
Numbers n such that A025428(n) = 0.
G.f.: x^2*(36*x^16 + 32*x^15 + 60*x^14 + 55*x^13 + 36*x^12 + 27*x^11 + 20*x^10 + 19*x^9 + 18*x^8 + 13*x^7 + 11*x^6 + 4*x^5 + 2*x^4 - x^3 - 3*x^2 - 2*x - 1)/(4*x^3 - 1). - Chai Wah Wu, Jul 09 2022