A000543 Number of inequivalent ways to color vertices of a cube using at most n colors.
0, 1, 23, 333, 2916, 16725, 70911, 241913, 701968, 1798281, 4173775, 8942021, 17930628, 34009053, 61518471, 106823025, 179003456, 290715793, 459239463, 707740861, 1066780100, 1576090341, 2286660783, 3263156073, 4586706576
Offset: 0
References
- N. G. De Bruijn, Polya's theory of counting, in E. F. Beckenbach, ed., Applied Combinatorial Mathematics, Wiley, 1964, pp. 144-184 (see p. 147).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Polyhedron Coloring
- Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
Crossrefs
Programs
-
Magma
[(1/24)*n^2*(n^6+17*n^2+6): n in [0..30]]; // Vincenzo Librandi, Apr 15 2012
-
Maple
f:= n->(1/24)*n^2*(n^6+17*n^2+6); seq(f(n), n=0..40);
-
Mathematica
CoefficientList[Series[x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9,{x,0,30}],x] (* Vincenzo Librandi, Apr 15 2012 *) Table[(n^8+17n^4+6n^2)/24,{n,0,30}] (* Robert A. Russell, Oct 08 2020 *)
Formula
a(n) = (1/24)*n^2*(n^6+17*n^2+6). (Replace all x_i's in the cycle index with n.)
G.f.: x*(1+x)*(1+13*x+149*x^2+514*x^3+149*x^4+13*x^5+x^6)/(1-x)^9. - Colin Barker, Jan 29 2012
a(n) = 1*C(n,1) + 21*C(n,2) + 267*C(n,3) + 1718*C(n,4) + 5250*C(n,5) + 7980*C(n,6) + 5880*C(n,7) + 1680*C(n,8), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
Extensions
Entry revised by N. J. A. Sloane, Jan 03 2005
Comments