A000545 Number of ways of n-coloring a dodecahedron.
1, 96, 9099, 280832, 4073375, 36292320, 230719293, 1145393152, 4707296613, 16666924000, 52307593239, 148602435840, 388302646355, 944900450144, 2162441849625, 4691253854208, 9710376716137, 19280531603808, 36888593841475, 68266682784000, 122597146773927
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Polyhedron Coloring
- Index entries for linear recurrences with constant coefficients, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
Crossrefs
Programs
-
Maple
(1/60)*n^12+(1/4)*n^6+(11/15)*n^4;
-
Mathematica
Table[n^12/60+n^6/4+11 n^4/15,{n,20}] (* or *) CoefficientList[Series[ -(((1+x) (1+x (82+x (7847+x (161900+x (943640+x (1764740+x (943640+x (161900+x (7847+x (82+x)))))))))))/(x-1)^13),{x,0,20}],x] (* Harvey P. Dale, Apr 25 2011 *)
Formula
G.f.: x*((1+x)*(1+x*(82+x*(7847+x*(161900+x*(943640+x*(1764740+x*(943640+x*(161900+x*(7847+x*(82+x)))))))))))/(1-x)^13. - Harvey P. Dale, Apr 25 2011
From Robert A. Russell, Oct 03 2020: (Start)
a(n) = (n^12 + 15*n^6 + 44*n^4) / 60.
a(n) = 1*C(n,1) + 94*C(n,2) + 8814*C(n,3) + 245008*C(n,4) + 2759250*C(n,5) + 15884004*C(n,6) + 52701264*C(n,7) + 106866144*C(n,8) + 134719200*C(n,9) + 103118400*C(n,10) + 43908480*C(n,11) + 7983360*C(n,12), where the coefficient of C(n,k) is the number of oriented colorings using exactly k colors.
Comments