cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000556 Expansion of exp(-x) / (1 - exp(x) + exp(-x)).

Original entry on oeis.org

1, 1, 5, 31, 257, 2671, 33305, 484471, 8054177, 150635551, 3130337705, 71556251911, 1784401334897, 48205833997231, 1402462784186105, 43716593539939351, 1453550100421124417, 51350258701767067711, 1920785418183176050505, 75839622064482770570791
Offset: 0

Views

Author

Keywords

References

  • Anthony G. Shannon and Richard L. Ollerton. "A note on Ledin's summation problem." The Fibonacci Quarterly 59:1 (2021), 47-56.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n, j)*(2^j-1), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Oct 05 2019
  • Mathematica
    CoefficientList[Series[E^(-x)/(1-E^x+E^(-x)), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 04 2015 *)
    Round@Table[(-1)^(n+1) (PolyLog[-n, 1-GoldenRatio] GoldenRatio + PolyLog[-n, GoldenRatio]/GoldenRatio)/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 30 2015 *)
  • PARI
    a(n) = sum(k=0, n, k!*fibonacci(k+1)*stirling(n, k, 2)); \\ Michel Marcus, Oct 30 2015

Formula

a(n) = Sum_{k=0..n} k!*Fibonacci(k+1)*Stirling2(n,k).
E.g.f.: 1/(1 + U(0)) where U(k) = 1 - 2^k/(1 - x/(x - (k+1)*2^k/U(k+1) )); (continued fraction 3rd kind, 3-step ). - Sergei N. Gladkovskii, Dec 05 2012
a(n) ~ 2*n! / ((5+sqrt(5)) * log((1+sqrt(5))/2)^(n+1)). - Vaclav Kotesovec, May 04 2015
a(n) = (-1)^(n+1)*(Li_{-n}(1-phi)*phi + Li_{-n}(phi)/phi)/sqrt(5), where Li_n(x) is the polylogarithm, phi=(1+sqrt(5))/2 is the golden ratio. - Vladimir Reshetnikov, Oct 30 2015
John W. Layman observes that this is also Sum (-2)^k*binomial(n, k)*b(n-k), where b() = A005923.
From Greg Dresden, May 13 2022 (Start):
For n > 0, a(n) = 1 + 2*Sum_{k=0..floor(n/2-1)} binomial(n,2*k+1) * a(n-2*k-1).
For n > 0, a(n) = Sum_{k=0..n-1} binomial(n,k)*A000557(k).
(End)