cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A000183 Number of discordant permutations of length n.

Original entry on oeis.org

0, 0, 0, 1, 2, 20, 144, 1265, 12072, 126565, 1445100, 17875140, 238282730, 3407118041, 52034548064, 845569542593, 14570246018686, 265397214435860, 5095853023109484, 102877234050493609, 2178674876680100744, 48296053720501168037, 1118480911876659396600
Offset: 1

Views

Author

Keywords

Comments

Ways to reseat n diners at circular table, none in or next to original chair.

Examples

			a(5) = 2: [ 1 2 3 4 5 ] -> [ 3 4 5 1 2 ] or [ 4 5 1 2 3 ].
Let n=7. Then, using the previous values of a(n), we have a(7) = -(4*7+31) + (7/6)*(8*20-2*20) - (14/5)*(4*2-13) + (7/4)*(2*1+2*9) + (7/3)*6 = -59+140+14+35+14 = 144. - _Vladimir Shevelev_, Apr 17 2011
		

References

  • J. Riordan, Discordant permutations, Scripta Math., 20 (1954), 14-23.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics I, Example 4.7.17.
  • K. Yamamoto, Structure polynomial of Latin rectangles and its application to a combinatorial problem, Memoirs of the Faculty of Science, Kyusyu University, Series A, 10 (1956), 1-13.

Crossrefs

Programs

  • Maple
    with(combinat): f:= n-> fibonacci(n-1) +fibonacci(n+1) +2:
    a:= proc(n) option remember; `if` (n<7, [0$3, 1, 2, 20][n], (-1)^n*(4*n+f(n)) +(n/(n-1))*((n+1)*a(n-1) +2*(-1)^n*f(n-1)) -((2*n)/(n-2))*((n-3)*a(n-2) +(-1)^n*f(n-2)) +(n/(n-3))*((n-5)*a(n-3) +2*(-1)^(n-1)*f(n-3)) +(n/(n-4))*(a(n-4) +(-1)^(n-1)*f(n-4))) end:
    seq(a(n), n=1..30);  # Alois P. Heinz, Apr 19 2011
  • Mathematica
    max = 22; f[x_, y_] := y*(1 + 3*x - 4*x^2*y - 3*x^2*y^2 - 3*x^3*y^2 + 4*x^4*y^3)/((1 - y - 2*x*y - x*y^2 + x^3*y^3)*(1 - x*y)); se = Series[f[x, y], {x, 0, max}, {y, 0, max}];coes = CoefficientList[se, {x, y}] ;t[n_, k_] := coes[[k, n]]; a[n_] := Sum[ (-1)^(k+1)*(n-k+1)!*t[n+1, k], {k, 1, n+1}]; a[1] = a[2] = a[3] = 0; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Oct 24 2011 *)
    Flatten[{0,0,RecurrenceTable[{(382-1142 n+712 n^2-185 n^3+22 n^4-n^5) a[-7+n]+(-3776+11024 n-7689 n^2+2397 n^3-384 n^4+31 n^5-n^6) a[-6+n]+(7394-18064 n+12353 n^2-3937 n^3+661 n^4-57 n^5+2 n^6) a[-5+n]+(1452-10548 n+8254 n^2-2655 n^3+423 n^4-33 n^5+n^6) a[-4+n]+(-11046+26716 n-18588 n^2+6013 n^3-1015 n^4+87 n^5-3 n^6) a[-3+n]+(632+5546 n-3888 n^2+1007 n^3-116 n^4+5 n^5) a[-2+n]+(3966-4666 n+3655 n^2-1445 n^3+284 n^4-27 n^5+n^6) a[-1+n]+(2444-3214 n+1409 n^2-283 n^3+27 n^4-n^5) a[n]==0,a[8]==1265,a[9]==12072,a[3]==0,a[4]==1,a[5]==2,a[6]==20,a[7]==144},a,{n,3,20}]}] (* Vaclav Kotesovec, Aug 10 2013 *)

Formula

a(n) = Sum_{m=0..n} (-1)^m*(n-m)!*A061702(n, m), n>2.
From Vladimir Shevelev, Apr 17 2011: (Start)
Let f(n) = F(n-1) + F(n+1) + 2, where F(n) is the n-th Fibonacci number.
Then, for n>=7, we have the recursion:
a(n) = (-1)^n*(4*n+f(n)) + (n/(n-1))*((n+1)*a(n-1) + 2*(-1)^n*f(n-1)) - ((2*n)/(n-2))*((n-3)*a(n-2) + (-1)^n*f(n-2)) + (n/(n-3))*((n-5)*a(n-3) + 2*(-1)^(n-1)*f(n-3)) + (n/(n-4))*(a(n-4) + (-1)^(n-1)*f(n-4)).
This formula (in an equivalent form) is due to K. Yamamoto. (End)
a(n) ~ n!*exp(-3). - Vaclav Kotesovec, Aug 10 2013

Extensions

More terms from Vladeta Jovovic, Jun 18 2001

A061702 Triangle T(n,k) defined by Sum_{n >= 0,m >= 0} T(n,m)*x^m*y^n = 1 + y*(1 + 3*x - 4*x^2*y - 3*x^2*y^2 - 3*x^3*y^2 + 4*x^4*y^3)/((1 - y - 2*x*y - x*y^2 + x^3*y^3)*(1 - x*y)).

Original entry on oeis.org

1, 1, 3, 1, 6, 5, 1, 9, 18, 6, 1, 12, 42, 44, 9, 1, 15, 75, 145, 95, 13, 1, 18, 117, 336, 420, 192, 20, 1, 21, 168, 644, 1225, 1085, 371, 31, 1, 24, 228, 1096, 2834, 3880, 2588, 696, 49, 1, 27, 297, 1719, 5652, 10656, 11097, 5823, 1278, 78, 1, 30, 375, 2540, 10165
Offset: 0

Views

Author

Vladeta Jovovic, Jun 18 2001

Keywords

Comments

It is uncertain if the initial term should be 0 or 1. Both make sense. I have changed the data line to start with 1, in agreement with Riordan (1954). - N. J. A. Sloane, Jun 28 2015
See Riordan 1954 page 21 equation (24). - Michael Somos, Aug 26 2015

Examples

			Triangle begins:
1,
1,3,
1,6,5,
1,9,18,6,
1,12,42,44,9,
1,15,75,145,95,13,
1,18,117,336,420,192,20,
1,21,168,644,1225,1085,371,31,
1,24,228,1096,2834,3880,2588,696,49,
1,27,297,1719,5652,10656,11097,5823,1278,78,
1,30,375,2540,10165,24626,35045,29380,12535,2310,125,
... (from _N. J. A. Sloane_, Jun 28 2015)
Sum_{n, k} T(n, k) u^n t^k = 1 + (1 + 3*t)*u + (1 + 6*t + 5*t^2)*u^2 + ...
		

References

  • R. P. Stanley, Enumerative Combinatorics I, Example 4.7.17.

Crossrefs

Cf. A000183, row sums: A061703, third column: A000338, fourth column: A000561, fifth column: A000562, sixth column: A000563, seventh column: A000564, eighth column: A000565.

Programs

  • Mathematica
    max = 11; f[x_, y_] := 1 + y*(1 + 3*x - 4*x^2*y - 3*x^2*y^2 - 3*x^3*y^2 + 4*x^4*y^3)/((1 - y - 2*x*y - x*y^2 + x^3*y^3)*(1 - x*y)); se = Series[f[x, y], {x, 0, max}, {y, 0, max}]; coes = CoefficientList[se, {x, y}] ; t[n_, k_] := coes[[k, n]]; Flatten[ Table[t[n, k], {n, 1, max}, {k, 1, n}]](* Jean-François Alcover, Oct 24 2011 *)

Extensions

Edited by N. J. A. Sloane, Jun 28 2015
Showing 1-2 of 2 results.