A000570 Number of tournaments on n nodes determined by their score vectors.
1, 1, 2, 4, 7, 11, 18, 31, 53, 89, 149, 251, 424, 715, 1204, 2028, 3418, 5761, 9708, 16358, 27565, 46452, 78279, 131910, 222285, 374581, 631222, 1063696, 1792472, 3020560, 5090059, 8577449, 14454177, 24357268, 41045336, 69167021, 116555915
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n = 1..500
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- Prasad Tetali, A characterization of unique tournaments, J. Comb Theory B 72 (1) (1998), 157-159.
- Index entries for sequences related to tournaments
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1,1).
Programs
-
Maple
A000570 := proc(n) option remember; if n <= 2 then RETURN(1) elif n=3 then RETURN(2) elif n=4 then RETURN(4) elif n=5 then RETURN(7) else A000570(n-1)+A000570(n-3)+A000570(n-4)+A000570(n-5); fi; end;
-
Mathematica
LinearRecurrence[{1,0,1,1,1},{1,1,2,4,7},50] (* Harvey P. Dale, May 05 2011 *)
-
PARI
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; 1,1,1,0,1]^(n-1)*[1;1;2;4;7])[1,1] \\ Charles R Greathouse IV, Jun 15 2015
Formula
a(n) = a(n-5) + a(n-4) + a(n-3) + a(n-1). - Jon E. Schoenfield, Aug 07 2006
G.f.: (1+x^2+x^3+x^4)/(1-x-x^3-x^4-x^5). - Harvey P. Dale, May 05 2011
Extensions
More terms from James Sellers, Feb 06 2000
Comments