A001639 A Fielder sequence. a(n) = a(n-1) + a(n-3) + a(n-4) + a(n-5), n >= 6.
1, 1, 4, 9, 16, 22, 36, 65, 112, 186, 309, 522, 885, 1492, 2509, 4225, 7124, 12010, 20236, 34094, 57453, 96823, 163163, 274946, 463316, 780755, 1315687, 2217112, 3736129, 6295887, 10609441, 17878369, 30127497, 50768954, 85552651, 144167958, 242942778
Offset: 1
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (1, 0, 1, 1, 1).
Crossrefs
Cf. A000570.
Programs
-
Magma
I:=[1, 1, 4, 9, 16]; [n le 5 select I[n] else Self(n-1) + Self(n-3) + Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Jan 09 2018
-
Maple
A001639:=-(1+3*z**2+4*z**3+5*z**4)/(-1+z+z**3+z**4+z**5); # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Drop[CoefficientList[Series[x*(1+3*x^2+4*x^3+5*x^4)/(1-x-x^3-x^4-x^5),{x,0,40}], x], 1] (* Stefan Steinerberger, Apr 10 2006 *) LinearRecurrence[{1,0,1,1,1}, {1,1,4,9,16}, 30] (* G. C. Greubel, Jan 09 2018 *)
-
PARI
a(n)=if(n<0,0,polcoeff(x*(1+3*x^2+4*x^3+5*x^4)/(1-x-x^3-x^4-x^5)+x*O(x^n),n))
Formula
G.f.: x*(1+3*x^2+4*x^3+5*x^4)/(1-x-x^3-x^4-x^5).
Extensions
Edited by Michael Somos, Feb 17 2002
Comments