cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000575 Tenth column of quintinomial coefficients.

Original entry on oeis.org

10, 80, 365, 1246, 3535, 8800, 19855, 41470, 81367, 151580, 270270, 464100, 771290, 1245488, 1960610, 3016820, 4547840, 6729800, 9791859, 14028850, 19816225, 27627600, 38055225, 51833730, 69867525, 93262260, 123360780, 161784040, 210477476, 271763360
Offset: 0

Views

Author

Keywords

Comments

In the Carlitz et al. reference a(n)= Q_{5,n+2}(2), n >= 0, with a(n)=binomial(11+n,n+2)-(n+3)*binomial(n+6,n+2), (eq.(3.3), p. 356, with n=5, m->n+2,r=2). Q_{5,m}(2) is the number of sequences (i_1,i_2,...,i_m) with i_s, s=1,...,m, from {1,2,3,4,5} (repetitions allowed), with exactly 2 increases between successive elements (first position is counted as an increase).

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    CoefficientList[Series[(10-20*x+15*x^2-4*x^3)/(1-x)^10,{x,0,50}],x](* Vincenzo Librandi, Mar 28 2012 *)
  • PARI
    a(n) = polcoeff((1+x+x^2+x^3+x^4)^(n+3), 9); \\ Joerg Arndt, Aug 04 2015

Formula

a(n) = A035343(n+3, 9) = binomial(n+6, 6)*(n^3+42*n^2+677*n+5040)/(9!/6!).
G.f.: (10-20*x+15*x^2-4*x^3)/(1-x)^10; numerator polynomial is N5(9, x) from the array A063422.
a(n) = 10*C(n+3,3) + 40*C(n+3,4) + 65*C(n+3,5) + 56*C(n+3,6) + 28*C(n+3,7) + 8*C(n+3,8) + C(n+3,9) (see comment in A213887). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = Sum_{k=1..10} (-1)^k * binomial(10,k) * a(n-k), a(0)=10. - G. C. Greubel, Aug 03 2015
a(n) = [x^9] (1+x+x^2+x^3+x^4)^(n+3). - Joerg Arndt, Aug 04 2015

Extensions

Comments and more terms from Wolfdieter Lang, Aug 29 2001
More terms from Sean A. Irvine, Nov 24 2010