A000575 Tenth column of quintinomial coefficients.
10, 80, 365, 1246, 3535, 8800, 19855, 41470, 81367, 151580, 270270, 464100, 771290, 1245488, 1960610, 3016820, 4547840, 6729800, 9791859, 14028850, 19816225, 27627600, 38055225, 51833730, 69867525, 93262260, 123360780, 161784040, 210477476, 271763360
Offset: 0
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374, p. 351.
- Index entries for linear recurrences with constant coefficients, signature (10, -45, 120, -210, 252, -210, 120, -45, 10, -1).
Programs
-
Mathematica
CoefficientList[Series[(10-20*x+15*x^2-4*x^3)/(1-x)^10,{x,0,50}],x](* Vincenzo Librandi, Mar 28 2012 *)
-
PARI
a(n) = polcoeff((1+x+x^2+x^3+x^4)^(n+3), 9); \\ Joerg Arndt, Aug 04 2015
Formula
a(n) = A035343(n+3, 9) = binomial(n+6, 6)*(n^3+42*n^2+677*n+5040)/(9!/6!).
G.f.: (10-20*x+15*x^2-4*x^3)/(1-x)^10; numerator polynomial is N5(9, x) from the array A063422.
a(n) = 10*C(n+3,3) + 40*C(n+3,4) + 65*C(n+3,5) + 56*C(n+3,6) + 28*C(n+3,7) + 8*C(n+3,8) + C(n+3,9) (see comment in A213887). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = Sum_{k=1..10} (-1)^k * binomial(10,k) * a(n-k), a(0)=10. - G. C. Greubel, Aug 03 2015
a(n) = [x^9] (1+x+x^2+x^3+x^4)^(n+3). - Joerg Arndt, Aug 04 2015
Extensions
Comments and more terms from Wolfdieter Lang, Aug 29 2001
More terms from Sean A. Irvine, Nov 24 2010
Comments