-
N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598,z,n);
# Another Maple program for g.f. G000598:
G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2,G000598)+2*subs(x=x^3,G000598)),x, n+1),x,n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n,x,n+1); od; G000598;
spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
-
m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x]
(* second program (after N. J. A. Sloane): *)
m = 45; gf[] = 0; Do[gf[z] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z] (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *)
b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *)
b[n_,i_,t_,k_]:= b[n,i,t,k]= If[i<1,0,
Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
Join[{1},Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
-
seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g,x,x^2)*g/2 + subst(g,x,x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
-
def seq(n):
B = PolynomialRing(QQ, 't', n+1);t = B.gens()
R. = B[[]]
T = sum([t[i] * z^i for i in range(1,n+1)]) + O(z^(n+1))
lhs, rhs = T, 1 + z/6 * (T(z)^3 + 3*T(z)*T(z^2) + 2*T(z^3))
I = B.ideal([lhs.coefficients()[i] - rhs.coefficients()[i] for i in range(n)])
return [I.reduce(t[i]) for i in range(1,n+1)]
seq(33) # Chris Grossack, Mar 31 2025
Comments