cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000603 Number of nonnegative solutions to x^2 + y^2 <= n^2.

Original entry on oeis.org

1, 3, 6, 11, 17, 26, 35, 45, 58, 73, 90, 106, 123, 146, 168, 193, 216, 243, 271, 302, 335, 365, 402, 437, 473, 516, 557, 600, 642, 687, 736, 782, 835, 886, 941, 999, 1050, 1111, 1167, 1234, 1297, 1357, 1424, 1491, 1564, 1636, 1703, 1778, 1852, 1931, 2012, 2095
Offset: 0

Views

Author

Keywords

Comments

Row sums of triangle A255238. - Wolfdieter Lang, Mar 15 2015

References

  • H. Gupta, A Table of Values of N_3(t), Proc. National Institute of Sciences of India, 13 (1947), 35-63.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A302998.

Programs

  • Haskell
    a000603 n = length [(x,y) | x <- [0..n], y <- [0..n], x^2 + y^2 <= n^2]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Mathematica
    Table[cnt = 0; Do[If[x^2 + y^2 <= n^2, cnt++], {x, 0, n}, {y, 0, n}]; cnt, {n, 0, 51}] (* T. D. Noe, Apr 02 2013 *)
    Table[If[n==1,1,2*Sum[Sum[A255195[[n, n - k + 1]], {k, 1, k}], {k, 1, n}] - Ceiling[(n - 1)/Sqrt[2]]],{n,1,52}] (* Mats Granvik, Feb 19 2015 *)
  • PARI
    a(n)=my(n2=n^2);sum(a=0,n,sqrtint(n2-a^2)+1) \\ Charles R Greathouse IV, Apr 03 2013
    
  • Python
    from math import isqrt
    def A000603(n): return (m:=n<<1)+sum(isqrt(k*(m-k)) for k in range(1,n))+1 # Chai Wah Wu, Jul 18 2024

Formula

a(n) = n^2 * Pi/4 + O(n). - Charles R Greathouse IV, Apr 03 2013
a(n) = A001182(n) + 2*n + 1. - R. J. Mathar, Jan 07 2015
a(n) = 2*A026702(n) - (1 + floor(n/sqrt(2))), n >= 0. - Wolfdieter Lang, Mar 15 2015
a(n) = [x^(n^2)] (1 + theta_3(x))^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

Extensions

More terms from David W. Wilson, May 22 2000