cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A239803 Decimal expansion of a constant related to A000620, A000622, A000623 and A000625.

Original entry on oeis.org

3, 2, 8, 7, 1, 1, 2, 0, 5, 5, 5, 8, 4, 4, 7, 4, 9, 9, 1, 2, 5, 9, 0, 6, 9, 1, 1, 6, 8, 8, 3, 0, 3, 5, 0, 8, 1, 0, 0, 0, 0, 1, 3, 7, 3, 0, 7, 3, 8, 1, 5, 1, 3, 4, 8, 3, 8, 9, 2, 4, 4, 9, 0, 1, 5, 5, 0, 6, 8, 1, 6, 6, 9, 7, 9, 2, 0, 0, 0, 0, 3, 8, 5, 3, 0, 9, 8, 7, 1, 6, 8, 9, 6, 9, 7, 2, 9, 2, 6, 1, 9, 0, 5, 3, 8
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 27 2014

Keywords

Examples

			3.287112055584474991259069116883035081000...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.301 and p.563.

Crossrefs

Formula

Equals lim n->infinity A000620(n)^(1/n).
Equals lim n->infinity A000622(n)^(1/n).
Equals lim n->infinity A000623(n)^(1/n).
Equals lim n->infinity A000625(n)^(1/n).

A239808 Decimal expansion of a constant related to A000623.

Original entry on oeis.org

0, 6, 9, 6, 4, 1, 2, 5, 2, 6, 2, 7, 3, 0, 0, 3, 5, 4, 4, 1, 5, 1, 8, 4, 9, 6, 2, 0, 5, 8, 5, 8, 3, 4, 6, 9, 7, 3, 2, 7, 2, 7, 3, 1, 4, 5, 4, 4, 8, 0, 4, 1, 3, 8, 0, 4, 0, 5, 5, 1, 9, 6, 1, 2, 3, 6, 3, 8, 3, 4, 1, 5, 3, 1, 3, 4, 8, 5, 7, 8, 2, 4, 1, 3, 1, 4, 9, 2, 6, 9, 2, 5, 3, 1, 7, 0, 3, 2, 1, 1, 9, 4, 9, 9, 9, 3
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 27 2014

Keywords

Examples

			0.069641252627300354415184962058583469732...
		

Crossrefs

Formula

Equals lim n->infinity A000623(n) / (A239803^n / n^(3/2)).

A000625 Number of n-node steric rooted ternary trees; number of n carbon alkyl radicals C(n)H(2n+1) taking stereoisomers into account.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 28, 74, 199, 551, 1553, 4436, 12832, 37496, 110500, 328092, 980491, 2946889, 8901891, 27012286, 82300275, 251670563, 772160922, 2376294040, 7333282754, 22688455980, 70361242924, 218679264772, 681018679604, 2124842137550, 6641338630714, 20792003301836
Offset: 0

Views

Author

Keywords

Comments

Nodes are unlabeled, each node has out-degree <= 3.
Steric, or including stereoisomers, means that the children of a node are taken in a certain cyclic order. If the children are rotated it is still the same tree, but any other permutation yields a different tree. See A000598 for the analogous sequence with stereoisomers not counted.
Other descriptions of this sequence: steric planted trees with n nodes; total number of monosubstituted alkanes C(n)H(2n+1)-X with n carbon atoms.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = A000624, T = this sequence. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • J. K. Percus, Combinatorial Methods, Lecture Notes, 1967-1968, Courant Institute, New York University, 212pp. See pp. 64-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A := 1; f := proc(n) global A; coeff(series( 1+(1/3)*x*(A^3+2*subs(x=x^3,A)), x, n+1), x, n); end; for n from 1 to 50 do A := series(A+f(n)*x^n,x,n +1); od: A;
    A000625 := proc(n)
        local j,i,a ;
        option remember;
        if n <= 1 then
            1 ;
        else
            a :=0 ;
            for j from 1 to n-1 do
                a := a+ j*procname(j)*add(procname(i)*procname(n-j-i-1),i=0..n-j-1) ;
            end do:
            if modp(n-1,3) = 0 then
                a := a+2*(n-1)*procname((n-1)/3)/3 ;
            end if;
            a/ (n-1) ;
        end if;
    end proc:
    seq(A000625(n),n=0..30) ;
  • Mathematica
    m = 31; c[0] = 1; gf[x_] = Sum[c[k] x^k, {k, 0, m}]; cc = Array[c, m]; coes = CoefficientList[ Series[gf[x] - 1 - (x*(gf[x]^3 + 2*gf[x^3])/3), {x, 0, m}], x] // Rest; Prepend[cc /. Solve[ Thread[ coes == 0], cc][[1]], 1]
    (* Jean-François Alcover, Jun 24 2011 *)
    a[0] = a[1] = 1; a[n_Integer] := a[n] = (Sum[j*a[j]*Sum[a[i]*a[n-i-j-1], {i, 0, n-j-1}], {j, 1, n-1}] + (2/3)*(n-1)*a[(n-1)/3])/(n-1); a[] = 0; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover, Apr 21 2016, after Emeric Deutsch *)
    terms = 32; A[] = 0; Do[A[x] = Normal[1 + x*(A[x]^3 + 2*A[x^3])/3 + O[x]^terms], terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Apr 22 2016, updated Jan 11 2018 *)
  • PARI
    a(n) = if(n, my(v=vector(n+1)); v[1]=1; v[2]=1; for(k=1, n-1, v[k+2] = sum(j=1, k, j*v[j+1]*(sum(i=0, k-j, v[i+1]*v[k-j-i+1])))/k + (2/3)*if(k%3, 0, v[k/3+1])); v[n+1], 1) \\ Jianing Song, Feb 17 2019

Formula

G.f. A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 28*x^6 + ... satisfies A(x) = 1 + x*(A(x)^3 + 2*A(x^3))/3.
a(0) = a(1) = 1; a(n+1) = 2*a(n/3)/3 + (Sum_{j=1..n} j*a(j)*(Sum_{i=1..n-j} a(i)*a(n-j-i)))/n for n >= 1, where a(k) = 0 if k not an integer (essentially eq (4) in the Robinson et al. paper). - Emeric Deutsch, May 16 2004
a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.346304267394183622435... (see A239810). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A000621 Number of monosubstituted alkanes C(n-1)H(2n-1)-X with n-1 carbon atoms that are not stereoisomers.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 14, 23, 39, 65, 110, 184, 310, 520, 876, 1471, 2475, 4159, 6996, 11759, 19775, 33244, 55902, 93984, 158030, 265696, 446746, 751128, 1262940, 2123444, 3570318, 6002983, 10093259, 16970431, 28533590, 47975381, 80664329, 135626284, 228037752
Offset: 1

Views

Author

Keywords

Comments

Also number of monosubstituted alkanes C(n)H(2n+1)-X of the form R-CH2-X (primary) that are not stereoisomers.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = A000620, Pn (and An, Sn) = this sequence, Ss = A000622, Ts = A000623, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 14*x^8 + 23*x^9 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 300.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax=40; a=1-x; Do[a=1/(1-x (a/.x->x^2)),{Log[2,nmax]+2}]; CoefficientList[Series[a,{x,0,nmax-1}],x] (* Jean-François Alcover, Jun 16 2011, after Michael Somos, fixed by Vaclav Kotesovec, Mar 28 2014 *)
    max = 40; cf = Fold[Function[1 - x^#2/#1], 1, 2^Reverse[Range[0, Floor[Log[2, max]]]]]; List @@ (1-Series[cf, {x, 0, 2*max}] // Normal) /. x -> 1 (* Jean-François Alcover, Sep 24 2014 *)
  • Maxima
    T(n,m):=if m=n then 1 else sum(binomial(i+m-1,i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i),i,1,n-m);
    makelist(T(2*n-1,1),n,1,30); /* Vladimir Kruchinin, Mar 18 2015 */
  • PARI
    {a(n) = my(A, m); if( n<1, 0, n--; m = 1; A = 1 + O(x); while( m<=n, m *= 2; A = 1 / (1 - x * subst(A, x, x^2)) ); polcoeff( A, n )) }; /* Michael Somos, Sep 03 2007 */
    

Formula

G.f.: A(x) satisfies A(x) = 1/(1-x*A(x^2)), with offset 0. - Paul D. Hanna, Aug 16 2002
Given g.f. A(x), then B(x) = A(x) / x satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = (1 - u)^2 * w - u^2 * v * (v - 1). - Michael Somos, Sep 03 2007
G.f.: x / (1 - x / (1 - x^2 / (1 - x^4 / (1 - ...)))). - Michael Somos, Sep 03 2007
From Joerg Arndt, Oct 15 2011: (Start)
For offset 0 (as considered in the 1937 Polya reference) we have
G.f.: A(x) = 1 / (1 - x / (1 - x^2 / (1 - x^4 / (1 - ...)))) and
A(x) satisfies A(x) = 1 + x*A(x)*A(x^2) (equivalent to Hanna's functional equation).
(End)
a(n) ~ c * beta^n, where beta = 1.681367524441880255591... (see A239804), c = 0.214536139134648555630... (see A239806). Asymptotic formula a(n) ~ K * beta^n from reference (Analytic Combinatorics, p. 283), where K = 0.3607140971, beta = 1.6813675244^n is for offset 0 (beta is same, but K = c * beta = 0.360714097160142828...). - Vaclav Kotesovec, Mar 27 2014
a(n) = T(2*n-1,1), where T(n,m) = Sum_{i=1..n-m} binomial(i+m-1,i)*((1+(-1)^(n-m))/2)*T((n-m)/2,i), n > m, T(n,n)=1. - Vladimir Kruchinin, Mar 18 2015
a(n) = A253190(2*n-1,1). - R. J. Mathar, Dec 16 2015

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002
Formulae edited by N. J. A. Sloane, Feb 27 2006

A000620 Number of monosubstituted alkanes C(n-1)H(2n-1)-X with n-1 carbon atoms that are stereoisomers.

Original entry on oeis.org

0, 0, 0, 0, 2, 6, 20, 60, 176, 512, 1488, 4326, 12648, 37186, 109980, 327216, 979020, 2944414, 8897732, 27005290, 82288516, 251650788, 772127678, 2376238138, 7333188770, 22688297950, 70360977228, 218678818026, 681017928476, 2124840874610, 6641336507270, 20791999731518
Offset: 1

Views

Author

Keywords

Comments

Also number of monosubstituted alkanes C(n)H(2n+1)-X of the form R-CH2-X (primary) that are stereoisomers.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = this sequence, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # Blair and Henze's recurrences for A000620-A000625 (see comments lines for relationship between the sequences and their symbols).
    Ps := [0,0,0]; Pn := [1,1,1]; Ss := [0,0,0]; Sn := [0,0,1]; Ts := [0,0,0]; Tn := [0,0,0]; As := [0,0,0]; An := [1,1,2]; T := [1,1,2];
    for n from 4 to 60 do Ps := [op(Ps),As[n-1]]; Pn := [op(Pn),An[n-1]]; t1 := add( 2*T[n-1-j]*T[j],j=1..floor((n-2)/2) ); if n mod 2 = 1 then i := (n-1)/2; t1 := t1+T[i]^2-An[i]; fi; Ss := [op(Ss),t1];
    t2 := 0; if n mod 2 = 1 then i := (n-1)/2; t2 := An[i]; fi; Sn := [op(Sn),t2]; t3 := 0; for i from 1 to (n-1)/3 do for j from i+1 to (n-2)/2 do k := n-1-i-j; if j 0 and i <> j then t4 := t4+(T[i]^2-An[i])*T[j]+An[i]*As[j]; t5 := t5+An[i]*An[j]; fi; od; t6 := 0; t7 := 0; if n mod 3 = 1 then i := (n-1)/3; t6 := (2*T[i]+T[i]^3)/3-An[i]^2; t7 := An[i]^2; fi;
    Ts := [op(Ts), t3+t4+t6]; Tn := [op(Tn), t5+t7]; As := [op(As), Ps[n]+Ss[n]+Ts[n]]; An := [op(An), Pn[n]+Sn[n]+Tn[n]]; T := [op(T),As[n]+An[n]]; od: Ps; Pn; Ss; Ts; Tn; T;
  • Mathematica
    (* See links *)

Formula

See Maple program for recurrences for this sequence and A000621-A000625.
a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.105352133282419523497... (see A239805). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A000622 Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are stereoisomers.

Original entry on oeis.org

0, 0, 0, 2, 4, 14, 34, 98, 270, 768, 2192, 6360, 18576, 54780, 162658, 486154, 1461174, 4413988, 13393816, 40807290, 124783604, 382842018, 1178140170, 3635626680, 11247841040, 34880346840, 108402132234, 337576497920, 1053229357732, 3291813720292, 10305275270364
Offset: 1

Views

Author

Keywords

Comments

R-CH-X (secondary)
.....|
.....R'
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = this sequence, Ts = A000623, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.171310881484463744523... (see A239807). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A000624 Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are not stereoisomers.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 9, 13, 26, 40, 74, 118, 210, 342, 595, 981, 1684, 2798, 4763, 7951, 13469, 22548, 38082, 63862, 107666, 180740, 304382, 511292, 860504, 1445998, 2432665, 4088805, 6877172, 11560684, 19441791, 32684789, 54961955, 92404472, 155377371, 261235027
Offset: 1

Views

Author

Keywords

Comments

....X
....|
R-C-R' (tertiary)
....|
....R"
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = this sequence, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) ~ c * beta^n, where beta = 1.681367524441880255591... (see A239804), c = 0.146177958025494272954... (see A239809). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002
False g.f. deleted by N. J. A. Sloane, May 13 2008
Showing 1-7 of 7 results.