cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A239804 Decimal expansion of a constant related to A000621 and A000624.

Original entry on oeis.org

1, 6, 8, 1, 3, 6, 7, 5, 2, 4, 4, 4, 1, 8, 8, 0, 2, 5, 5, 5, 9, 1, 7, 0, 2, 3, 7, 0, 3, 9, 2, 0, 0, 6, 3, 2, 2, 8, 6, 4, 0, 4, 3, 4, 7, 5, 3, 6, 4, 3, 1, 3, 5, 5, 2, 7, 5, 2, 9, 3, 3, 0, 1, 9, 5, 8, 4, 1, 3, 9, 4, 5, 5, 2, 8, 2, 7, 9, 0, 6, 8, 0, 6, 4, 2, 1, 2, 2, 1, 3, 2, 7, 8, 9, 8, 9, 2, 3, 4, 1, 9, 1, 4, 1, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 27 2014

Keywords

Examples

			1.681367524441880255591702370392006322864...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.300 and p.560.

Crossrefs

Formula

Equals lim n->infinity A000621(n)^(1/n).
Equals lim n->infinity A000624(n)^(1/n).

A239806 Decimal expansion of a constant related to A000621.

Original entry on oeis.org

2, 1, 4, 5, 3, 6, 1, 3, 9, 1, 3, 4, 6, 4, 8, 5, 5, 5, 6, 3, 0, 5, 7, 2, 4, 4, 8, 4, 3, 6, 1, 9, 3, 3, 0, 8, 0, 9, 5, 1, 7, 8, 0, 4, 6, 5, 0, 1, 8, 9, 3, 5, 9, 5, 7, 8, 2, 8, 3, 4, 4, 7, 7, 1, 3, 8, 7, 7, 4, 1, 2, 7, 9, 8, 6, 9, 2, 9, 5, 8, 2, 9, 7, 6, 8, 2, 6, 4, 1, 2, 3, 0, 1, 3, 5, 0, 9, 5, 5, 1, 3, 2, 5, 4, 1, 9
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 27 2014

Keywords

Comments

In both references is cited a constant K = A239806 * A239804 = 0.360714097160142828... (related to A000621 with offset 0).

Examples

			0.214536139134648555630572448436193308095...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6., p.300 and p.548.

Crossrefs

Formula

Equals lim n->infinity A000621(n) / A239804^n.

A000625 Number of n-node steric rooted ternary trees; number of n carbon alkyl radicals C(n)H(2n+1) taking stereoisomers into account.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 28, 74, 199, 551, 1553, 4436, 12832, 37496, 110500, 328092, 980491, 2946889, 8901891, 27012286, 82300275, 251670563, 772160922, 2376294040, 7333282754, 22688455980, 70361242924, 218679264772, 681018679604, 2124842137550, 6641338630714, 20792003301836
Offset: 0

Views

Author

Keywords

Comments

Nodes are unlabeled, each node has out-degree <= 3.
Steric, or including stereoisomers, means that the children of a node are taken in a certain cyclic order. If the children are rotated it is still the same tree, but any other permutation yields a different tree. See A000598 for the analogous sequence with stereoisomers not counted.
Other descriptions of this sequence: steric planted trees with n nodes; total number of monosubstituted alkanes C(n)H(2n+1)-X with n carbon atoms.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = A000624, T = this sequence. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • J. K. Percus, Combinatorial Methods, Lecture Notes, 1967-1968, Courant Institute, New York University, 212pp. See pp. 64-65.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A := 1; f := proc(n) global A; coeff(series( 1+(1/3)*x*(A^3+2*subs(x=x^3,A)), x, n+1), x, n); end; for n from 1 to 50 do A := series(A+f(n)*x^n,x,n +1); od: A;
    A000625 := proc(n)
        local j,i,a ;
        option remember;
        if n <= 1 then
            1 ;
        else
            a :=0 ;
            for j from 1 to n-1 do
                a := a+ j*procname(j)*add(procname(i)*procname(n-j-i-1),i=0..n-j-1) ;
            end do:
            if modp(n-1,3) = 0 then
                a := a+2*(n-1)*procname((n-1)/3)/3 ;
            end if;
            a/ (n-1) ;
        end if;
    end proc:
    seq(A000625(n),n=0..30) ;
  • Mathematica
    m = 31; c[0] = 1; gf[x_] = Sum[c[k] x^k, {k, 0, m}]; cc = Array[c, m]; coes = CoefficientList[ Series[gf[x] - 1 - (x*(gf[x]^3 + 2*gf[x^3])/3), {x, 0, m}], x] // Rest; Prepend[cc /. Solve[ Thread[ coes == 0], cc][[1]], 1]
    (* Jean-François Alcover, Jun 24 2011 *)
    a[0] = a[1] = 1; a[n_Integer] := a[n] = (Sum[j*a[j]*Sum[a[i]*a[n-i-j-1], {i, 0, n-j-1}], {j, 1, n-1}] + (2/3)*(n-1)*a[(n-1)/3])/(n-1); a[] = 0; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover, Apr 21 2016, after Emeric Deutsch *)
    terms = 32; A[] = 0; Do[A[x] = Normal[1 + x*(A[x]^3 + 2*A[x^3])/3 + O[x]^terms], terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Apr 22 2016, updated Jan 11 2018 *)
  • PARI
    a(n) = if(n, my(v=vector(n+1)); v[1]=1; v[2]=1; for(k=1, n-1, v[k+2] = sum(j=1, k, j*v[j+1]*(sum(i=0, k-j, v[i+1]*v[k-j-i+1])))/k + (2/3)*if(k%3, 0, v[k/3+1])); v[n+1], 1) \\ Jianing Song, Feb 17 2019

Formula

G.f. A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 28*x^6 + ... satisfies A(x) = 1 + x*(A(x)^3 + 2*A(x^3))/3.
a(0) = a(1) = 1; a(n+1) = 2*a(n/3)/3 + (Sum_{j=1..n} j*a(j)*(Sum_{i=1..n-j} a(i)*a(n-j-i)))/n for n >= 1, where a(k) = 0 if k not an integer (essentially eq (4) in the Robinson et al. paper). - Emeric Deutsch, May 16 2004
a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.346304267394183622435... (see A239810). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A085357 Common residues of binomial(3n,n)/(2n+1) modulo 2: relates ternary trees (A001764) to the infinite Fibonacci word (A003849).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jun 25 2003

Keywords

Comments

The n-th runs of ones is given by: 3 - A003849(n) (infinite Fibonacci word) = A076662(n+1). Runs of zeros are given by: A085358 and are also directly related to the Fibonacci sequence. Coefficients of A(x)^3 are found in A085359.
a(n) = 0 iff some binary digit of n is 1 while the corresponding binary digit of 3*n is 0. - Robert Israel, Jul 12 2016
The Run Length Transform of [0,1,0,0,0,...], A063524, the characteristic function of 1. (See A227349 for the definition). - Antti Karttunen, Oct 15 2016

Crossrefs

Cf. A001764 (ternary trees), A085358 (runs of zeros), A076662 (runs of ones), A003849 (infinite Fibonacci word), A085359 (A(x)^3).
Absolute values of A132971.

Programs

  • Magma
    [Binomial(3*n,n) mod 2: n in [0..100]]; // Vincenzo Librandi, Jul 09 2016
    
  • Maple
    f:= proc(n) local L,Lp;
      L:= convert(n,base,2);
      Lp:= convert(3*n,base,2);
      if has(L-Lp[1..nops(L)],1) then 0 else 1 fi
    end proc:
    map(f, [$0..100]); # Robert Israel, Jul 12 2016
  • Mathematica
    Table[Mod[Binomial[3 n, n], 2], {n, 0, 120}] (* Michael De Vlieger, Jul 08 2016 *)
  • PARI
    A085357(n) = !bitand(n,n<<1); \\ Antti Karttunen, Aug 22 2019
    
  • Python
    def A085357(n): return int(not n&(n<<1)) # Chai Wah Wu, Jun 25 2025

Formula

G.f.: 1 + x*A(x)^3 = A(x) (Mod 2); a(n) = A001764(n) (Mod 2).
a(n) = binomial(3n, n) (mod 2). Characteristic function of Fibbinary numbers (i.e. a(n)=1 iff n is in A003714). - Benoit Cloitre, Nov 15 2003
Recurrence: a(0) = 1, a(2n) = a(4n+1) = a(n), a(4n+3) = 0.
a(n-2) = A000256(n)(mod 2), for n>2. - John M. Campbell, Jul 08 2016
a(n) = A000621(n+1)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A000625(n)(mod 2). - John M. Campbell, Jul 15 2016
a(n) = A008966(A005940(1+n)). [Follows from the Run Length Transform interpretation, see also A277010.] - Antti Karttunen, Oct 15 2016
a(n) = abs(A132971(n)) = abs(A008683(A005940(1+n))). - Antti Karttunen, May 30 2017

A000620 Number of monosubstituted alkanes C(n-1)H(2n-1)-X with n-1 carbon atoms that are stereoisomers.

Original entry on oeis.org

0, 0, 0, 0, 2, 6, 20, 60, 176, 512, 1488, 4326, 12648, 37186, 109980, 327216, 979020, 2944414, 8897732, 27005290, 82288516, 251650788, 772127678, 2376238138, 7333188770, 22688297950, 70360977228, 218678818026, 681017928476, 2124840874610, 6641336507270, 20791999731518
Offset: 1

Views

Author

Keywords

Comments

Also number of monosubstituted alkanes C(n)H(2n+1)-X of the form R-CH2-X (primary) that are stereoisomers.
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = this sequence, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # Blair and Henze's recurrences for A000620-A000625 (see comments lines for relationship between the sequences and their symbols).
    Ps := [0,0,0]; Pn := [1,1,1]; Ss := [0,0,0]; Sn := [0,0,1]; Ts := [0,0,0]; Tn := [0,0,0]; As := [0,0,0]; An := [1,1,2]; T := [1,1,2];
    for n from 4 to 60 do Ps := [op(Ps),As[n-1]]; Pn := [op(Pn),An[n-1]]; t1 := add( 2*T[n-1-j]*T[j],j=1..floor((n-2)/2) ); if n mod 2 = 1 then i := (n-1)/2; t1 := t1+T[i]^2-An[i]; fi; Ss := [op(Ss),t1];
    t2 := 0; if n mod 2 = 1 then i := (n-1)/2; t2 := An[i]; fi; Sn := [op(Sn),t2]; t3 := 0; for i from 1 to (n-1)/3 do for j from i+1 to (n-2)/2 do k := n-1-i-j; if j 0 and i <> j then t4 := t4+(T[i]^2-An[i])*T[j]+An[i]*As[j]; t5 := t5+An[i]*An[j]; fi; od; t6 := 0; t7 := 0; if n mod 3 = 1 then i := (n-1)/3; t6 := (2*T[i]+T[i]^3)/3-An[i]^2; t7 := An[i]^2; fi;
    Ts := [op(Ts), t3+t4+t6]; Tn := [op(Tn), t5+t7]; As := [op(As), Ps[n]+Ss[n]+Ts[n]]; An := [op(An), Pn[n]+Sn[n]+Tn[n]]; T := [op(T),As[n]+An[n]]; od: Ps; Pn; Ss; Ts; Tn; T;
  • Mathematica
    (* See links *)

Formula

See Maple program for recurrences for this sequence and A000621-A000625.
a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.105352133282419523497... (see A239805). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A000622 Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are stereoisomers.

Original entry on oeis.org

0, 0, 0, 2, 4, 14, 34, 98, 270, 768, 2192, 6360, 18576, 54780, 162658, 486154, 1461174, 4413988, 13393816, 40807290, 124783604, 382842018, 1178140170, 3635626680, 11247841040, 34880346840, 108402132234, 337576497920, 1053229357732, 3291813720292, 10305275270364
Offset: 1

Views

Author

Keywords

Comments

R-CH-X (secondary)
.....|
.....R'
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = this sequence, Ts = A000623, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.171310881484463744523... (see A239807). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A000623 Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are stereoisomers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 18, 66, 208, 646, 1962, 5962, 18014, 54578, 165650, 504220, 1539330, 4713742, 14475936, 44578668, 137634872, 425970290, 1321323952, 4107268140, 12792332438, 39915708564, 124762612530, 390593588402, 1224681912368, 3845387953884, 12090382743374
Offset: 1

Views

Author

Keywords

Comments

....X
....|
R-C-R' (tertiary)
....|
....R"
Let the entries in the nine columns of Blair and Henze's Table I (JACS 54 (1932), p. 1098) be denoted by Ps(n), Pn(n), Ss(n), Sn(n), Ts(n), Tn(n), As(n), An(n), T(n) respectively (here P = Primary, S = Secondary, T = Tertiary, s = stereoisomers, n = non-stereoisomers and the last column T(n) gives total).
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = A000622, Ts = this sequence, Tn = A000624, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) ~ c * b^n / n^(3/2), where b = 3.287112055584474991259... (see A239803), c = 0.069641252627300354415... (see A239808). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002

A000624 Number of monosubstituted alkanes C(n)H(2n+1)-X of the form shown in the Comments lines that are not stereoisomers.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 9, 13, 26, 40, 74, 118, 210, 342, 595, 981, 1684, 2798, 4763, 7951, 13469, 22548, 38082, 63862, 107666, 180740, 304382, 511292, 860504, 1445998, 2432665, 4088805, 6877172, 11560684, 19441791, 32684789, 54961955, 92404472, 155377371, 261235027
Offset: 1

Views

Author

Keywords

Comments

....X
....|
R-C-R' (tertiary)
....|
....R"
Then Ps (and As) = A000620, Pn (and An, Sn) = A000621, Ss = A000622, Ts = A000623, Tn = this sequence, T = A000625. Recurrences generating these sequences are given in the Maple program in A000620.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) ~ c * beta^n, where beta = 1.681367524441880255591... (see A239804), c = 0.146177958025494272954... (see A239809). - Vaclav Kotesovec, Mar 27 2014

Extensions

Additional comments from Bruce Corrigan, Nov 04 2002
False g.f. deleted by N. J. A. Sloane, May 13 2008

A132971 a(2*n) = a(n), a(4*n+1) = -a(n), a(4*n+3) = 0, with a(0) = 1.

Original entry on oeis.org

1, -1, -1, 0, -1, 1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, -1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, 0, 1, -1, 0, 0, 1, -1, -1, 0, 0, 0, 0, 0, 1, -1
Offset: 0

Views

Author

Michael Somos, Sep 17 2007, Sep 19 2007

Keywords

Comments

If binary(n) has adjacent 1 bits then a(n) = 0 else a(n) = (-1)^A000120(n).
Fibbinary numbers (A003714) gives the numbers n for which a(n) = A106400(n). - Antti Karttunen, May 30 2017

Examples

			G.f. = 1 - x - x^2 - x^4 + x^5 - x^8 + x^9 + x^10 - x^16 + x^17 + x^18 + ...
		

Crossrefs

Cf. A085357 (gives the absolute values: -1 -> 1), A286576 (when reduced modulo 3: -1 -> 2).

Programs

  • Mathematica
    m = 100; A[_] = 1;
    Do[A[x_] = A[x^2] - x A[x^4] + O[x]^m // Normal, {m}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Nov 16 2019 *)
  • PARI
    {a(n) = if( n<1, n==0, if( n%2, if( n%4 > 1, 0, -a((n-1)/4) ), a(n/2) ) )};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = 1; A = 1 + O(x); while( m<=n, m *= 2; A = subst(A, x, x^2) - x * subst(A, x, x^4) ); polcoeff(A, n)) };
    
  • Python
    from sympy import mobius, prime, log
    import math
    def A(n): return n - 2**int(math.floor(log(n, 2)))
    def b(n): return n + 1 if n<2 else prime(1 + (len(bin(n)[2:]) - bin(n)[2:].count("1"))) * b(A(n))
    def a(n): return mobius(b(n)) # Indranil Ghosh, May 30 2017
  • Scheme
    (define (A132971 n) (cond ((zero? n) 1) ((even? n) (A132971 (/ n 2))) ((= 1 (modulo n 4)) (- (A132971 (/ (- n 1) 4)))) (else 0))) ;; Antti Karttunen, May 30 2017
    

Formula

A024490(n) = number of solutions to 2^n <= k < 2^(n+1) and a(k) = 1.
A005252(n) = number of solutions to 2^n <= k < 2^(n+1) and a(k) = -1.
A027935(n-1) = number of solutions to 2^n <= k < 2^(n+1) and a(k) = 0.
G.f. A(x) satisfies A(x) = A(x^2) - x * A(x^4).
G.f. B(x) of A000621 satisfies B(x) = x * A(x^2) / A(x).
a(n) = A008683(A005940(1+n)). [Analogous to Moebius mu] - Antti Karttunen, May 30 2017

A101913 G.f. satisfies: A(x) = 1/(1 + x*A(x^3)) and also the continued fraction: 1+x*A(x^4) = [1;1/x,1/x^3,1/x^9,1/x^27,...,1/x^(3^(n-1)),...].

Original entry on oeis.org

1, -1, 1, -1, 2, -3, 4, -6, 9, -13, 19, -28, 41, -61, 90, -132, 195, -288, 424, -625, 922, -1359, 2004, -2955, 4356, -6423, 9471, -13963, 20587, -30355, 44755, -65987, 97293, -143449, 211503, -311844, 459785, -677912, 999524, -1473709, 2172854, -3203685, 4723551, -6964461, 10268490, -15139986
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2004

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A);A=1-x;for(i=1,n\3+1, A=1/(1+x*subst(A,x,x^3)+x*O(x^n)));polcoeff(A,n,x)}
    
  • PARI
    {a(n)=local(M=contfracpnqn(concat(1, vector(ceil(log(n+1)/log(3))+1,n,1/x^(3^(n-1)))))); polcoeff(M[1,1]/M[2,1]+x*O(x^(4*n+1)),4*n+1)}

Formula

From Joerg Arndt, Oct 15 2011: (Start)
For the sequence abs(a(n)) we have
g.f. B(x) 1/(1-x/(1-x^3/(1-x^9/(1-x^27(1- ... ))))) and
B(x) satisfies B(x) = 1 + x*B(x)*B(x^3) (cf. A000621)
(End)
G.f.: T(0), where T(k) = 1 - (-x)^(3^k)/((-x)^(3^k) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 18 2013
a(0) = 1; a(n) = -Sum_{k=0..floor((n-1)/3)} a(k) * a(n-3*k-1). - Ilya Gutkovskiy, Mar 01 2022
Showing 1-10 of 27 results. Next