cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000679 Number of groups of order 2^n.

Original entry on oeis.org

1, 1, 2, 5, 14, 51, 267, 2328, 56092, 10494213, 49487367289
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 51*x^5 + 267*x^6 + 2328*x^7 + ...
		

References

  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • M. F. Newman, Groups of prime-power order (1990). In Groups—Canberra 1989 (pp. 49-62). Springer, Berlin, Heidelberg. See Table 1.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128, Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    A000679 := List([0..8],n -> NumberSmallGroups(2^n)); # Muniru A Asiru, Oct 15 2017
  • Maple
    seq(GroupTheory:--NumGroups(2^n),n=0..10); # Robert Israel, Oct 15 2017
  • Mathematica
    Join[{1}, FiniteGroupCount[2^Range[10]]] (* Vincenzo Librandi, Mar 28 2018 *)

Formula

a(n) = 2^((2/27)n^3 + O(n^(8/3))).
a(n) = A000001(2^n). - Amiram Eldar, Mar 10 2024

Extensions

a(9) and a(10) found by Eamonn O'Brien
a(10) corrected by David Burrell, Jun 06 2022