cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A001034 Orders of noncyclic simple groups (without repetition).

Original entry on oeis.org

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348, 175560, 178920
Offset: 1

Views

Author

Keywords

Comments

An alternative definition, to assist in searching: Orders of non-cyclic finite simple groups.
This comment is about the three sequences A001034, A060793, A056866: The Feit-Thompson theorem says that a finite group with odd order is solvable, hence all numbers in this sequence are even. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 08 2001 [Corrected by Isaac Saffold, Aug 09 2021]
The primitive elements are A257146. These are also the primitive elements of A056866. - Charles R Greathouse IV, Jan 19 2017
Conjecture: This is a subsequence of A083207 (Zumkeller numbers). Verified for n <= 156. A fast provisional test was used, based on Proposition 17 from Rao/Peng JNT paper (see A083207). For those few cases where the fast test failed (such as 2588772 and 11332452) the comprehensive (but much slower) test by T. D. Noe at A083207 was used for result confirmation. - Ivan N. Ianakiev, Jan 11 2020
From M. Farrokhi D. G., Aug 11 2020: (Start)
The conjecture is not true. The smallest and the only counterexample among the first 457 terms of the sequence is a(175) = 138297600.
On the other hand, the orders of sporadic simple groups are Zumkeller. And with the exception of the smallest two orders 7920 and 95040, the odd part of the other orders are also Zumkeller. (End)
Every term in this sequence is divisible by 4*p*q, where p and q are distinct odd primes. - Isaac Saffold, Oct 24 2021

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • Dickson L.E. Linear groups, with an exposition of the Galois field theory (Teubner, 1901), p. 309.
  • M. Hall, Jr., A search for simple groups of order less than one million, pp. 137-168 of J. Leech, editor, Computational Problems in Abstract Algebra. Pergamon, Oxford, 1970.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A109379 (orders with repetition), A119648 (orders that are repeated).

A090091 Number of groups of order 3^n.

Original entry on oeis.org

1, 1, 2, 5, 15, 67, 504, 9310, 1396077, 5937876645
Offset: 0

Views

Author

Eamonn O'Brien, Jan 22 2004

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 67*x^5 + 504*x^6 + 9310*x^7 + ...
		

References

  • G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
  • Hans Ulrich Besche, Bettina Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, International Journal of Algebra and Computation, Vol. 12, No 5 (2002), 623-644.
  • W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955.
  • Marcus du Sautoy, Symmetry: A Journey into the Patterns of Nature, HarperCollins, 2008, p. 96.

Crossrefs

Programs

Formula

a(n) = A000001(3^n).

Extensions

a(7) from David Radcliffe, Feb 24 2010
a(8) from Muniru A Asiru, Oct 17 2018
a(9) from David Burrell, Sep 01 2023

A090130 Number of groups of order 5^n.

Original entry on oeis.org

1, 1, 2, 5, 15, 77, 684, 34297
Offset: 0

Views

Author

Eamonn O'Brien, Jan 22 2004

Keywords

References

  • G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
  • Hans Ulrich Besche, Bettina Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, International Journal of Algebra and Computation, Vol. 12, No 5 (2002), 623-644.
  • W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955.

Crossrefs

Programs

Formula

For a prime p >= 5, the number of groups of order p^n begins 1, 1, 2, 5, 15, 61 + 2*p + 2*gcd (p - 1, 3) + gcd (p - 1, 4), 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5), ...

Extensions

Corrected and extended by David Radcliffe, Feb 24 2010
Corrected and extended by Eamonn O'Brien, Mar 06 2010

A232106 Number of groups of order prime(n)^6.

Original entry on oeis.org

267, 504, 684, 860, 1192, 1476, 1944, 2264, 2876, 4068, 4540, 6012, 7064, 7664, 8852, 10908, 13136, 14012, 16520, 18292, 19296, 22244, 24296, 27648, 32472, 34964, 36284, 38912, 40356, 43128, 53780, 56992, 62064, 63824, 72828, 74740, 80532, 86504, 90572, 96948
Offset: 1

Views

Author

Eric M. Schmidt, Nov 21 2013

Keywords

Comments

Isomorphism types of groups and nilpotent Lie rings with order prime(n)^6.

Crossrefs

Programs

  • GAP
    A232106 := Concatenation([267, 504], List(Filtered([5..10^5], IsPrime), p -> 3 * p^2 + 39 * p + 344 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1, 5))); # Muniru A Asiru, Nov 16 2017
  • Maple
    a:= n-> `if`(n<3, [267, 504][n], (c-> 386 +(45 +3*c)*c+
        24*igcd(c, 3) +11*igcd(c, 4) +2*igcd(c, 5))(ithprime(n)-1)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Nov 17 2017
  • Mathematica
    Table[FiniteGroupCount[Prime[n]^6], {n, 40}] (* Michael De Vlieger, Apr 12 2016 *)
  • PARI
    a(n) = if(n==1, 267, if (n==2, 504, my(p=prime(n)); 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5))); \\ Altug Alkan, Apr 12 2016
    
  • Sage
    def A232106(n) : p = nth_prime(n); return 267 if p==2 else 504 if p==3 else 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)
    

Formula

For a prime p > 3, the number of groups of order p^6 is 3p^2 + 39p + 344 + 24 gcd(p - 1, 3) + 11 gcd(p - 1, 4) + 2 gcd(p - 1, 5).

A090140 Number of groups of order 7^n.

Original entry on oeis.org

1, 1, 2, 5, 15, 83, 860, 113147
Offset: 0

Views

Author

Eamonn O'Brien, Jan 22 2004

Keywords

References

  • G. Bagnera, La composizione dei Gruppi finiti il cui grado e la quinta potenza di un numero primo, Ann. Mat. Pura Appl. (3), 1 (1898), 137-228.
  • Hans Ulrich Besche, Bettina Eick and E. A. O'Brien, A Millennium Project: Constructing Small Groups, International Journal of Algebra and Computation, Vol. 12, No 5 (2002), 623-644.
  • W. Burnside, Theory of Groups of Finite Order, Dover, NY, 1955.
  • M. F. Newman, E. A. O'Brien and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra, 278 (2004), 383-401.
  • E. A. O'Brien and M. R. Vaughan-Lee, The groups of order p^7 for odd prime p, J. Algebra 292, 243-258, 2005.

Crossrefs

Formula

For a prime p >= 5, the number of groups of order p^n begins 1, 1, 2, 5, 15, 61 + 2*p + 2*gcd (p - 1, 3) + gcd (p - 1, 4), 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5), ...

Extensions

Corrected and extended by David Radcliffe, Feb 24 2010
Updated reference for p^7 Eamonn O'Brien, Mar 06 2010

A109379 Orders of non-cyclic simple groups (with repetition).

Original entry on oeis.org

60, 168, 360, 504, 660, 1092, 2448, 2520, 3420, 4080, 5616, 6048, 6072, 7800, 7920, 9828, 12180, 14880, 20160, 20160, 25308, 25920, 29120, 32736, 34440, 39732, 51888, 58800, 62400, 74412, 95040, 102660, 113460, 126000, 150348
Offset: 1

Views

Author

N. J. A. Sloane, Jul 29 2006

Keywords

Comments

The first repetition is at 20160 (= 8!/2) and the first proof that there exist two nonisomorphic simple groups of this order was given by the American mathematician Ida May Schottenfels (1869-1942). - David Callan, Nov 21 2006
By the Feit-Thompson theorem, all terms in this sequence are even. - Robin Jones, Dec 25 2023

References

  • See A001034 for references and other links.

Crossrefs

Cf. A001034 (orders without repetition), A119648 (orders that are repeated).

A046058 Incrementally largest numbers of nonisomorphic finite groups of order n.

Original entry on oeis.org

1, 2, 5, 14, 15, 51, 52, 267, 2328, 56092, 10494213, 49487367289
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

a(n) = A000001(A046059(n)). - M. F. Hasler, Feb 24 2015

Extensions

a(11) and a(12) from Eamonn O'Brien, Apr 15 2002
a(12) corrected by David Burrell, Jun 06 2022

A232105 Number of groups of order prime(n)^5.

Original entry on oeis.org

51, 67, 77, 83, 87, 97, 101, 107, 111, 125, 131, 145, 149, 155, 159, 173, 183, 193, 203, 207, 217, 227, 231, 245, 265, 269, 275, 279, 289, 293, 323, 327, 341, 347, 365, 371, 385, 395, 399, 413, 423, 433, 447, 457, 461, 467, 491, 515, 519, 529, 533, 543, 553
Offset: 1

Views

Author

Eric M. Schmidt, Nov 21 2013

Keywords

Crossrefs

Programs

  • GAP
    A232105 := Concatenation([51, 67], List(Filtered([5..10^5], IsPrime), p -> 61 + 2 * p + 2 * Gcd(p-1, 3) + Gcd(p-1, 4))); # Muniru A Asiru, Nov 16 2017
  • Sage
    def A232105(n) : p = nth_prime(n); return 51 if p==2 else 67 if p==3 else 61 + 2*p + 2*gcd(p - 1, 3) + gcd(p - 1, 4)
    

Formula

For a prime p > 3, the number of groups of order p^5 is 61 + 2p + 2 gcd(p - 1, 3) + gcd(p - 1, 4).

A232107 Number of groups of order prime(n)^7.

Original entry on oeis.org

2328, 9310, 34297, 113147, 750735, 1600573, 5546909, 9380741, 23316851, 71271069, 98488755, 233043067, 384847485, 485930975, 751588475, 1356370173, 2299880351, 2710679045, 4306310927, 5734323819, 6578172579, 9721485395, 12413061671, 17537591045, 26866372821
Offset: 1

Views

Author

Eric M. Schmidt, Nov 21 2013

Keywords

Crossrefs

Programs

  • GAP
    A232107 := Concatenation([2328, 9310, 34297], List(Filtered([7..10^5], IsPrime), p -> 3 * p^5 + 12 * p^4 + 44 * p^3 + 170 * p^2 + 707 * p + 2455 + (4 * p^2 + 44 * p + 291) * Gcd(p-1, 3) + (p^2 + 19 * p + 135) * Gcd(p-1, 4) + (3 * p + 31) * Gcd(p-1, 5) + 4 *  Gcd(p-1, 7) + 5 * Gcd(p-1, 8) +  Gcd(p-1, 9))); # Muniru A Asiru, Nov 16 2017
  • Maple
    a:= n-> `if`(n<4, [2328, 9310, 34297][n], (c-> 3391 +(1242+
        (404 +(122 +(27 +3*c)*c)*c)*c)*c +(339 +(52 +4*c)*c)*igcd(c, 3)+
        (155 +(21 +c)*c)*igcd(c, 4) +(34 +3*c)*igcd(c, 5) +4*igcd(c, 7)+
         5*igcd(c, 8) +igcd(c, 9))(ithprime(n)-1)):
    seq(a(n), n=1..25);  # Alois P. Heinz, Nov 17 2017
  • Sage
    def A232107(n) : p = nth_prime(n); return 2328 if p==2 else 9310 if p==3 else 34297 if p==5 else 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*gcd(p - 1, 3) + (p^2 + 19*p + 135)*gcd(p - 1, 4) + (3*p + 31)*gcd(p - 1, 5) + 4*gcd(p - 1, 7) + 5*gcd(p - 1, 8) + gcd(p - 1, 9)
    

Formula

For a prime p > 5, the number of groups of order p^7 is 3p^5 + 12p^4 + 44p^3 + 170p^2 + 707p + 2455 + (4p^2 + 44p + 291)gcd(p - 1, 3) + (p^2 + 19p + 135)gcd(p - 1, 4) + (3p + 31)gcd(p - 1, 5) + 4 gcd(p - 1, 7) + 5 gcd(p - 1, 8) + gcd(p - 1, 9).
Showing 1-10 of 21 results. Next