cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A046059 Orders of finite groups having the incrementally largest numbers of nonisomorphic forms A046058.

Original entry on oeis.org

1, 4, 8, 16, 24, 32, 48, 64, 128, 256, 512, 1024, 2048
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

a(11)-a(12) from Eamonn O'Brien, Apr 15 2002
a(13) added by Eric M. Schmidt, Aug 02 2012

A000001 Number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 14, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 52, 2, 5, 1, 5, 1, 15, 2, 13, 2, 2, 1, 13, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 50, 1, 2, 3, 4, 1, 6, 1, 52, 15, 2, 1, 15, 1, 2, 1, 12, 1, 10, 1, 4, 2
Offset: 0

Views

Author

Keywords

Comments

Also, number of nonisomorphic subgroups of order n in symmetric group S_n. - Lekraj Beedassy, Dec 16 2004
Also, number of nonisomorphic primitives (antiderivatives) of the combinatorial species Lin[n-1], or X^{n-1}; see Rajan, Summary item (i). - Nicolae Boicu, Apr 29 2011
In (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), a(n) is called the "group number of n", denoted by gnu(n), and the first occurrence of k is called the "minimal order attaining k", denoted by moa(k) (see A046057). - Daniel Forgues, Feb 15 2017
It is conjectured in (J. H. Conway, Heiko Dietrich and E. A. O'Brien, 2008) that the sequence n -> a(n) -> a(a(n)) = a^2(n) -> a(a(a(n))) = a^3(n) -> ... -> consists ultimately of 1s, where a(n), denoted by gnu(n), is called the "group number of n". - Muniru A Asiru, Nov 19 2017
MacHale (2020) shows that there are infinitely many values of n for which there are more groups than rings of that order (cf. A027623). He gives n = 36355 as an example. It would be nice to have enough values of n to create an OEIS entry for them. - N. J. A. Sloane, Jan 02 2021
I conjecture that a(i) * a(j) <= a(i*j) for all nonnegative integers i and j. - Jorge R. F. F. Lopes, Apr 21 2024

Examples

			Groups of orders 1 through 10 (C_n = cyclic, D_n = dihedral of order n, Q_8 = quaternion, S_n = symmetric):
1: C_1
2: C_2
3: C_3
4: C_4, C_2 X C_2
5: C_5
6: C_6, S_3=D_6
7: C_7
8: C_8, C_4 X C_2, C_2 X C_2 X C_2, D_8, Q_8
9: C_9, C_3 X C_3
10: C_10, D_10
		

References

  • S. R. Blackburn, P. M. Neumann, and G. Venkataraman, Enumeration of Finite Groups, Cambridge, 2007.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 302, #35.
  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 134.
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 150.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, A Foundation for Computer Science, Addison-Wesley Publ. Co., Reading, MA, 1989, Section 6.6 'Fibonacci Numbers' pp. 281-283.
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • D. Joyner, 'Adventures in Group Theory', Johns Hopkins Press. Pp. 169-172 has table of groups of orders < 26.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.24, p. 481.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128. Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The main sequences concerned with group theory are A000001 (this one), A000679, A001034, A001228, A005180, A000019, A000637, A000638, A002106, A005432, A000688, A060689, A051532.
A003277 gives n for which A000001(n) = 1, A063756 (partial sums).
A046057 gives first occurrence of each k.
A027623 gives the number of rings of order n.

Programs

  • GAP
    A000001 := Concatenation([0], List([1..500], n -> NumberSmallGroups(n))); # Muniru A Asiru, Oct 15 2017
  • Magma
    D:=SmallGroupDatabase(); [ NumberOfSmallGroups(D, n) : n in [1..1000] ]; // John Cannon, Dec 23 2006
    
  • Maple
    GroupTheory:-NumGroups(n); # with(GroupTheory); loads this command - N. J. A. Sloane, Dec 28 2017
  • Mathematica
    FiniteGroupCount[Range[100]] (* Harvey P. Dale, Jan 29 2013 *)
    a[ n_] := If[ n < 1, 0, FiniteGroupCount @ n]; (* Michael Somos, May 28 2014 *)

Formula

From Mitch Harris, Oct 25 2006: (Start)
For p, q, r primes:
a(p) = 1, a(p^2) = 2, a(p^3) = 5, a(p^4) = 14, if p = 2, otherwise 15.
a(p^5) = 61 + 2*p + 2*gcd(p-1,3) + gcd(p-1,4), p >= 5, a(2^5)=51, a(3^5)=67.
a(p^e) ~ p^((2/27)e^3 + O(e^(8/3))).
a(p*q) = 1 if gcd(p,q-1) = 1, 2 if gcd(p,q-1) = p. (p < q)
a(p*q^2) is one of the following:
---------------------------------------------------------------------------
| a(p*q^2) | p*q^2 of the form | Sequences (p*q^2) |
---------- ------------------------------------------ ---------------------
| (p+9)/2 | q == 1 (mod p), p odd | A350638 |
| 5 | p=3, q=2 => p*q^2 = 12 |Special case with A_4|
| 5 | p=2, q odd | A143928 |
| 5 | p == 1 (mod q^2) | A350115 |
| 4 | p == 1 (mod q), p > 3, p !== 1 (mod q^2) | A349495 |
| 3 | q == -1 (mod p), p and q odd | A350245 |
| 2 | q !== +-1 (mod p) and p !== 1 (mod q) | A350422 |
---------------------------------------------------------------------------
[Table from Bernard Schott, Jan 18 2022]
a(p*q*r) (p < q < r) is one of the following:
q == 1 (mod p) r == 1 (mod p) r == 1 (mod q) a(p*q*r)
-------------- -------------- -------------- --------
No No No 1
No No Yes 2
No Yes No 2
No Yes Yes 4
Yes No No 2
Yes No Yes 3
Yes Yes No p+2
Yes Yes Yes p+4
[table from Derek Holt].
(End)
a(n) = A000688(n) + A060689(n). - R. J. Mathar, Mar 14 2015

Extensions

More terms from Michael Somos
Typo in b-file description fixed by David Applegate, Sep 05 2009

A000679 Number of groups of order 2^n.

Original entry on oeis.org

1, 1, 2, 5, 14, 51, 267, 2328, 56092, 10494213, 49487367289
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 51*x^5 + 267*x^6 + 2328*x^7 + ...
		

References

  • James Gleick, Faster, Vintage Books, NY, 2000 (see pp. 259-261).
  • M. Hall, Jr. and J. K. Senior, The Groups of Order 2^n (n <= 6). Macmillan, NY, 1964.
  • M. F. Newman, Groups of prime-power order (1990). In Groups—Canberra 1989 (pp. 49-62). Springer, Berlin, Heidelberg. See Table 1.
  • M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128, Group theory (Singapore, 1987), 437-442, de Gruyter, Berlin-New York, 1989.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    A000679 := List([0..8],n -> NumberSmallGroups(2^n)); # Muniru A Asiru, Oct 15 2017
  • Maple
    seq(GroupTheory:--NumGroups(2^n),n=0..10); # Robert Israel, Oct 15 2017
  • Mathematica
    Join[{1}, FiniteGroupCount[2^Range[10]]] (* Vincenzo Librandi, Mar 28 2018 *)

Formula

a(n) = 2^((2/27)n^3 + O(n^(8/3))).
a(n) = A000001(2^n). - Amiram Eldar, Mar 10 2024

Extensions

a(9) and a(10) found by Eamonn O'Brien
a(10) corrected by David Burrell, Jun 06 2022

A046057 Smallest order m > 0 for which there are n nonisomorphic finite groups of order m, or 0 if no such order exists.

Original entry on oeis.org

1, 4, 75, 28, 8, 42, 375, 510, 308, 90, 140, 88, 56, 16, 24, 100, 675, 156, 1029, 820, 1875, 6321, 294, 546, 2450, 2550, 1210, 2156, 1380, 270, 11774, 630
Offset: 1

Views

Author

Keywords

Comments

R. Keith Dennis conjectures that there are no 0's in this sequence. See A053403 for details.
In (John H. Conway, Heiko Dietrich and E. A. O'Brien, 2008), m is called the "minimal order attaining n" and is denoted by moa(n). - Daniel Forgues, Feb 15 2017
a(33) > 30500. - Muniru A Asiru, Nov 15 2017
From Jorge R. F. F. Lopes, Jan 07 2022: (Start)
The following values taken from the Max Horn website are improvements over those given in the Conway-Dietrich-O'Brien table (see Links):
a(58) = 3591, a(59) = 6328, a(63) = 2025, a(73) = 24003, a(74) = 25250, a(78) = 12750, a(90) = 2970, a(91) = 2058, a(92) = 15092. (End)

References

  • J. H. Conway et al., The Symmetries of Things, Peters, 2008, p. 209.

Crossrefs

Extensions

More terms from Victoria A. Sapko (vsapko(AT)canes.gsw.edu), Nov 04 2003
a(20) corrected by N. J. A. Sloane, Jan 21 2004
More terms from N. J. A. Sloane, Oct 03 2008, from the John H. Conway, Heiko Dietrich and E. A. O'Brien article.
a(31)-a(32) from Muniru A Asiru, Nov 15 2017

A297420 Square of the number of groups of order n.

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 4, 1, 25, 4, 4, 1, 25, 1, 4, 1, 196, 1, 25, 1, 25, 4, 4, 1, 225, 4, 4, 25, 16, 1, 16, 1, 2601, 1, 4, 1, 196, 1, 4, 4, 196, 1, 36, 1, 16, 4, 4, 1, 2704, 4, 25, 1, 25, 1, 225, 4, 169, 4, 4, 1, 169, 1, 4, 16, 71289, 1, 16, 1, 25, 1, 16, 1, 2500
Offset: 0

Views

Author

Vincenzo Librandi, Dec 31 2017

Keywords

Comments

The record values are 1, 4, 25, 196, 225, 2601, 2704, 71289, 5419584, 3146312464, 110128506489369, 2448999521196387209521, etc. (A046058)

Crossrefs

Programs

  • GAP
    Concatenation([0], List([1..100], n -> NumberSmallGroups(n)^2)); # Muniru A Asiru, Jan 29 2018
  • Magma
    D:=SmallGroupDatabase(); [0] cat [ NumberOfSmallGroups(D, n)^2 : n in [1..100] ];
    
  • Maple
    with(GroupTheory):  0,seq(NumGroups(n)^2, n=1..100); # Muniru A Asiru, Jan 29 2018
  • Mathematica
    Join[{0}, FiniteGroupCount[Range[200]]^2]

Formula

a(n) = A000001(n)^2.

Extensions

Name clarified by Jon E. Schoenfield, May 24 2019
Showing 1-5 of 5 results.