A158079 Duplicate of A090091.
1, 2, 5, 15, 67, 504, 9310
Offset: 1
Keywords
References
- Marcus Du Sautoy, Symmetry: A Journey into the Patterns of Nature,Harper (March 11, 2008),page 96
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A090130 := List([0..7],n -> NumberSmallGroups(5^n)); # Muniru A Asiru, Oct 15 2017
A232106 := Concatenation([267, 504], List(Filtered([5..10^5], IsPrime), p -> 3 * p^2 + 39 * p + 344 + 24 * Gcd(p-1, 3) + 11 * Gcd(p-1, 4) + 2 * Gcd(p-1, 5))); # Muniru A Asiru, Nov 16 2017
a:= n-> `if`(n<3, [267, 504][n], (c-> 386 +(45 +3*c)*c+ 24*igcd(c, 3) +11*igcd(c, 4) +2*igcd(c, 5))(ithprime(n)-1)): seq(a(n), n=1..40); # Alois P. Heinz, Nov 17 2017
Table[FiniteGroupCount[Prime[n]^6], {n, 40}] (* Michael De Vlieger, Apr 12 2016 *)
a(n) = if(n==1, 267, if (n==2, 504, my(p=prime(n)); 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5))); \\ Altug Alkan, Apr 12 2016
def A232106(n) : p = nth_prime(n); return 267 if p==2 else 504 if p==3 else 3*p^2 + 39*p + 344 + 24*gcd(p - 1, 3) + 11*gcd(p - 1, 4) + 2*gcd(p - 1, 5)
A232105 := Concatenation([51, 67], List(Filtered([5..10^5], IsPrime), p -> 61 + 2 * p + 2 * Gcd(p-1, 3) + Gcd(p-1, 4))); # Muniru A Asiru, Nov 16 2017
def A232105(n) : p = nth_prime(n); return 51 if p==2 else 67 if p==3 else 61 + 2*p + 2*gcd(p - 1, 3) + gcd(p - 1, 4)
A232107 := Concatenation([2328, 9310, 34297], List(Filtered([7..10^5], IsPrime), p -> 3 * p^5 + 12 * p^4 + 44 * p^3 + 170 * p^2 + 707 * p + 2455 + (4 * p^2 + 44 * p + 291) * Gcd(p-1, 3) + (p^2 + 19 * p + 135) * Gcd(p-1, 4) + (3 * p + 31) * Gcd(p-1, 5) + 4 * Gcd(p-1, 7) + 5 * Gcd(p-1, 8) + Gcd(p-1, 9))); # Muniru A Asiru, Nov 16 2017
a:= n-> `if`(n<4, [2328, 9310, 34297][n], (c-> 3391 +(1242+ (404 +(122 +(27 +3*c)*c)*c)*c)*c +(339 +(52 +4*c)*c)*igcd(c, 3)+ (155 +(21 +c)*c)*igcd(c, 4) +(34 +3*c)*igcd(c, 5) +4*igcd(c, 7)+ 5*igcd(c, 8) +igcd(c, 9))(ithprime(n)-1)): seq(a(n), n=1..25); # Alois P. Heinz, Nov 17 2017
def A232107(n) : p = nth_prime(n); return 2328 if p==2 else 9310 if p==3 else 34297 if p==5 else 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*gcd(p - 1, 3) + (p^2 + 19*p + 135)*gcd(p - 1, 4) + (3*p + 31)*gcd(p - 1, 5) + 4*gcd(p - 1, 7) + 5*gcd(p - 1, 8) + gcd(p - 1, 9)
n=30: below 30 coprimes to 30 phi(30)=8 numbers are relevant but each 1 or primes; so a(8)>30; the first suitable number is a(30)=49.
m=0;Table[fla=1;Do[s=GCD[n, k];If[Equal[s, 1]&&!PrimeQ[n]&&!Equal[n, 1]&& Equal[fla, 1], m=m+1;Print[n];fla=0], {n, 1, 130}], {k, 1, 256}]
A089090(n) = forprime(p=2, , if(n%p, return(p*p))); \\ Antti Karttunen, Dec 19 2018
Array begins: (p = 2) (p = 3) (p = 5) (p = 7) (p = 11) (p = 13) ... 1 1 1 1 1 1 ... 1 1 1 1 1 1 ... 2 2 2 2 2 2 ... 5 5 5 5 5 5 ... 14 15 15 15 15 15 ... 51 67 77 83 87 97 ... 267 504 684 860 1192 1476 ... 2328 9310 34297 113147 750735 1600573 ... ...
# This program computes the first 45 terms, rows 0..8. P:=Filtered([1..300],IsPrime);; T1:=List([0..7],n->List([0..15],k->NumberSmallGroups(P[k+1]^n)));; T2:=[Flat(Concatenation(List([8],n->List([0],k->NumberSmallGroups(P[k+1]^n))),List([1..14],i->0)))];; T:=Concatenation(T1,T2);; b:=List([2..10],n->OrderedPartitions(n,2));; a:=Flat(List([1..Length(b)],i->List([1..Length(b[i])],j->T[b[i][j][2]][b[i][j][1]]))); # Muniru A Asiru, Oct 01 2018
with(GroupTheory): T:=proc(n,k) NumGroups(ithprime(k+1)^n); end proc: seq(seq(T(n-k,k),k=0..n),n=0..10); # Muniru A Asiru, Oct 03 2018
(* This program uses Higman's PORC functions to compute the rows 0 to 7 *) f[0, p_] := 1; f[1, p_] := 1; f[2, p_] := 2; f[3, p_] := 5; f[4, p_] := If[p == 2, 14, 15]; f[5, p_] := If[p == 2, 51, If[p == 3, 67, 61 + 2*p + 2*GCD[p - 1, 3] + GCD[p - 1, 4]]]; f[6, p_] := If[p == 2, 267, If[p == 3, 504, 3*p^2 + 39*p + 344 + 24*GCD[p - 1, 3] + 11*GCD[p - 1, 4] + 2*GCD[p - 1, 5]]]; f[7, p_] := If[p == 2, 2328, If[p == 3, 9310, If[p == 5, 34297, 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*GCD[p - 1, 3] + (p^2 + 19*p + 135)*GCD[p - 1, 4] + (3*p + 31)*GCD[p - 1, 5] + 4*GCD[p - 1, 7] + 5*GCD[p - 1, 8] + GCD[p - 1, 9]]]]; tabl[kk_] := TableForm[Table[f[n, Prime[k+1]], {n, 0, 7}, {k, 0, kk}]];
Comments