cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000684 Number of colored labeled n-node graphs with 2 interchangeable colors.

Original entry on oeis.org

1, 3, 13, 81, 721, 9153, 165313, 4244481, 154732801, 8005686273, 587435092993, 61116916981761, 9011561121239041, 1882834327457349633, 557257804202631217153, 233610656002563147038721, 138681207656726645785559041
Offset: 1

Views

Author

Keywords

Comments

a(n) = A058872(n) + 1. This sequence counts the empty graph on n nodes which is not allowed in A058872. - Geoffrey Critzer, Oct 07 2012

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

2 * A000683(n) + 1.

Programs

  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[Sum[x^n/(1-2^n x)^n,{n,nn}],{x,0,nn}], x]]] (* Harvey P. Dale, Nov 24 2011 *)
  • PARI
    a(n)=polcoeff(sum(k=1,n,x^k/(1-2^k*x +x*O(x^n))^k),n) \\ Paul D. Hanna, Sep 14 2009

Formula

G.f.: A(x) = Sum_{n>=1} x^n/(1 - 2^n*x)^n. - Paul D. Hanna, Sep 14 2009
G.f.: 1/(W(0)-x) where W(k) = x*(x*2^k-1)^k - (x*2^(k+1)-1)^(k+1) + x*((2*x*2^k-1)^(2*k+2))/W(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
From Peter Bala, Apr 01 2013: (Start)
a(n) = Sum_{k = 0..n-1} binomial(n-1,k)*2^(k*(n-k)).
a(n) = Sum_{k = 0..n} 2^k*A111636(n,k).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence (but with an offset of 0) is E(x)*E(2*x) = Sum_{n >= 0} a(n+1)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 13*x^2/(2!*2) + 81*x^3/(3!*2^3) + 721*x^4/(4!*2^6) + .... Cf. A134531. (End)

Extensions

a(15) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference