A000707 Number of permutations of [1,2,...,n] with n-1 inversions.
1, 1, 2, 6, 20, 71, 259, 961, 3606, 13640, 51909, 198497, 762007, 2934764, 11333950, 43874857, 170193528, 661386105, 2574320659, 10034398370, 39163212165, 153027659730, 598577118991, 2343628878849, 9184197395425, 36020235035016, 141376666307608
Offset: 1
Examples
a(4) = 6 because there are 6 multisubsets of {a,b,b,c,c,c} with cardinality =3: {a,b,b}, {a,b,c}, {a,c,c}, {b,b,c}, {b,c,c}, {c,c,c}. - _Geoffrey Critzer_, Apr 01 2010, corrected by _Jacob Post_, Jan 03 2011 G.f. = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 71*x^6 + 259*x^7 + 961*x^8 + ...
References
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
- S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
- E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1665
- R. K. Guy, Letter to N. J. A. Sloane with attachment, Mar 1988
- B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4.
- Mathematics Stack Exchange, number of ordered multisets in A000707.
- R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
- E. Netto, Lehrbuch der Combinatorik, 2nd ed., Teubner, Leipzig, 1st ed., 1901, p. 96.
- E. Netto, Lehrbuch der Combinatorik, 2nd ed., Teubner, Leipzig, 1st ed., 1901, p. 96.
- E. Netto, Lehrbuch der Combinatorik, Chapter 4, annotated scanned copy of pages 92-99 only.
- Jeffrey Shallit, Letter to N. J. A. Sloane, Oct 08 1980
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, add(b(n-j, i-1), j=0..min(n, i)))) end: a:= n-> b(n-1$2): seq(a(n), n=1..27); # Alois P. Heinz, Jun 26 2023
-
Mathematica
Table[SeriesCoefficient[ Series[Product[Sum[x^i, {i, 0, k}], {k, 0, n}], {x, 0, 20}], n], {n, 1, 20}] (* Geoffrey Critzer, Apr 01 2010 *) a[ n_] := SeriesCoefficient[ Product[ Sum[ x^i, {i, 0, k}], {k, 0, n}], {x, 0, n}]; (* Michael Somos, Aug 15 2016 *)
-
PARI
{a(n) = my(v); if( n<1, 0, sum(k=0, n!-1, v = numtoperm(n, k); n-1 == sum(i=1, n-1, sum(j=i+1, n, v[i]>v[j]))))}; /* Michael Somos, Aug 15 2016 */
Formula
See A008302 for g.f.
a(n) = 2^(2*n-2)/sqrt(Pi*n)*Q*(1+O(n^(-1))), where Q is a digital search tree constant, Q = Product_{n>=1} (1 - 1/(2^n)) = QPochhammer[1/2, 1/2] = 0.288788095... (see A048651), corrected and extended by Vaclav Kotesovec, Mar 16 2014
Extensions
More terms from James Sellers, Dec 16 1999
Asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Better definition from Joerg Arndt, Jan 10 2011
Comments