A000713 EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 8, 18, 38, 74, 139, 249, 434, 734, 1215, 1967, 3132, 4902, 7567, 11523, 17345, 25815, 38045, 55535, 80377, 115379, 164389, 232539, 326774, 456286, 633373, 874213, 1200228, 1639418, 2228546, 3015360, 4062065, 5448995, 7280060, 9688718, 12846507, 16972577
Offset: 0
Keywords
References
- H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 390
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<2,3,2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
-
Mathematica
nn=20; g=Product[1/(1-x^i), {i,1,nn}]; c=1/(1-x); CoefficientList[Series[g^2/(1-x), {x,0,nn}], x] (* Geoffrey Critzer, Apr 19 2012 *)
-
PARI
x='x+O('x^66); Vec(1/((1-x)*eta(x)^2)) \\ Joerg Arndt, May 01 2013
-
Python
from functools import lru_cache from sympy import divisor_sigma @lru_cache(maxsize=None) def A000713(n): return sum(A000713(k)*((divisor_sigma(n-k)<<1)+1) for k in range(n))//n if n else 1 # Chai Wah Wu, Sep 25 2023
Formula
G.f.: A(x)/(1-x) where A(x) is g.f. for A000712. - Geoffrey Critzer, Apr 19 2012.
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(3*n)/Pi * A000712(n).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*Pi*3^(1/4)*n^(3/4)).
(End)
G.f.: exp(Sum_{k>=1} (2*sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018
Extensions
Extended with formula from Christian G. Bower, Apr 15 1998
Definition changed by N. J. A. Sloane, Aug 15 2006
Comments