cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000713 EULER transform of 3, 2, 2, 2, 2, 2, 2, 2, ...

Original entry on oeis.org

1, 3, 8, 18, 38, 74, 139, 249, 434, 734, 1215, 1967, 3132, 4902, 7567, 11523, 17345, 25815, 38045, 55535, 80377, 115379, 164389, 232539, 326774, 456286, 633373, 874213, 1200228, 1639418, 2228546, 3015360, 4062065, 5448995, 7280060, 9688718, 12846507, 16972577
Offset: 0

Views

Author

Keywords

Comments

Equals row sums of triangle A146023. - Gary W. Adamson, Oct 26 2008
Partial sums of A000712. - Geoffrey Critzer, Apr 19 2012, corrected by Omar E. Pol, Jun 19 2012
Equals the number of partitions of n with 1's of three kinds and all parts >1 of two kinds. - Gregory L. Simay, Mar 25 2018

References

  • H. Gupta et al., Tables of Partitions. Royal Society Mathematical Tables, Vol. 4, Cambridge Univ. Press, 1958, p. 122.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of triangle A093010.
Cf. A146023. - Gary W. Adamson, Oct 26 2008

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> `if`(n<2,3,2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
  • Mathematica
    nn=20; g=Product[1/(1-x^i), {i,1,nn}]; c=1/(1-x); CoefficientList[Series[g^2/(1-x), {x,0,nn}], x] (* Geoffrey Critzer, Apr 19 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/((1-x)*eta(x)^2)) \\ Joerg Arndt, May 01 2013
    
  • Python
    from functools import lru_cache
    from sympy import divisor_sigma
    @lru_cache(maxsize=None)
    def A000713(n): return sum(A000713(k)*((divisor_sigma(n-k)<<1)+1) for k in range(n))//n if n else 1 # Chai Wah Wu, Sep 25 2023

Formula

G.f.: A(x)/(1-x) where A(x) is g.f. for A000712. - Geoffrey Critzer, Apr 19 2012.
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(3*n)/Pi * A000712(n).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*Pi*3^(1/4)*n^(3/4)).
(End)
G.f.: exp(Sum_{k>=1} (2*sigma_1(k) + 1)*x^k/k). - Ilya Gutkovskiy, Aug 21 2018

Extensions

Extended with formula from Christian G. Bower, Apr 15 1998
Definition changed by N. J. A. Sloane, Aug 15 2006