A000743 Number of compositions of n into 5 ordered relatively prime parts.
1, 5, 15, 35, 70, 125, 210, 325, 495, 700, 1000, 1330, 1820, 2305, 3060, 3750, 4830, 5775, 7315, 8490, 10625, 12155, 14880, 16835, 20475, 22620, 27405, 30100, 35750, 39100, 46360, 49655, 58905, 62985, 73320, 78340, 91390, 95720, 111930, 117425
Offset: 5
Keywords
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Marius A. Burtea, Table of n, a(n) for n = 5..10000
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- N. J. A. Sloane, Transforms
Programs
-
Magma
[&+[MoebiusMu(n div d)*Binomial(d-1, 4):d in Divisors(n)]:n in[5..44]]; // Marius A. Burtea, Feb 08 2020
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*binomial(d-1, 4), d=divisors(n)): seq(a(n), n=5..50); # Alois P. Heinz, Feb 05 2020
-
Mathematica
a[n_] := Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 4], {k, 1, n}]; Table[a[n], {n, 5, 52}] (* Jean-François Alcover, Feb 11 2016 *)
Formula
Möbius transform of binomial(n-1, 4).
G.f.: Sum_{k>=1} mu(k) * x^(5*k) / (1 - x^k)^5. - Ilya Gutkovskiy, Feb 05 2020
Extensions
Offset changed to 5 by Ilya Gutkovskiy, Feb 05 2020