A023023
Number of partitions of n into 3 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 6, 6, 10, 8, 14, 12, 16, 16, 24, 18, 30, 24, 32, 30, 44, 32, 50, 42, 54, 48, 70, 48, 80, 64, 80, 72, 96, 72, 114, 90, 112, 96, 140, 96, 154, 120, 144, 132, 184, 128, 196, 150, 192, 168, 234, 162, 240, 192, 240, 210, 290, 192, 310, 240, 288, 256, 336, 240, 374
Offset: 3
From _Gus Wiseman_, Oct 08 2020: (Start)
The a(3) = 1 through a(13) = 14 triples (A = 10, B = 11):
111 211 221 321 322 332 432 433 443 543 544
311 411 331 431 441 532 533 552 553
421 521 522 541 542 651 643
511 611 531 631 551 732 652
621 721 632 741 661
711 811 641 831 733
722 921 742
731 A11 751
821 832
911 841
922
931
A21
B11
(End)
A000837 counts these partitions of any length.
A001399(n-3) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A307719 is the pairwise coprime instead of relatively prime version.
A337599 is the pairwise non-coprime instead of relative prime version.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
Cf.
A000010,
A000217,
A007434,
A055684,
A078374,
A200976,
A220377,
A302698,
A327516,
A337563,
A337600,
A337605.
-
Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&]],{n,3,50}] (* Gus Wiseman, Oct 08 2020 *)
A101271
Number of partitions of n into 3 distinct and relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 8, 9, 12, 12, 16, 15, 21, 20, 26, 25, 33, 28, 40, 36, 45, 42, 56, 44, 65, 56, 70, 64, 84, 66, 96, 81, 100, 88, 120, 90, 133, 110, 132, 121, 161, 120, 175, 140, 176, 156, 208, 153, 220, 180, 222, 196, 261, 184, 280, 225, 270, 240, 312, 230, 341, 272
Offset: 6
For n=10 we have 4 such partitions: 1+2+7, 1+3+6, 1+4+5 and 2+3+5.
From _Gus Wiseman_, Oct 13 2020: (Start)
The a(6) = 1 through a(18) = 15 triples (A..F = 10..15):
321 421 431 432 532 542 543 643 653 654 754 764 765
521 531 541 632 651 652 743 753 763 854 873
621 631 641 732 742 752 762 853 863 954
721 731 741 751 761 843 871 872 972
821 831 832 851 852 943 953 981
921 841 932 861 952 962 A53
931 941 942 961 971 A71
A21 A31 951 A51 A43 B43
B21 A32 B32 A52 B52
A41 B41 A61 B61
B31 C31 B42 C51
C21 D21 B51 D32
C32 D41
C41 E31
D31 F21
E21
(End)
A000741 is the ordered non-strict version.
A001399(n-6) does not require relative primality.
A023022 counts pairs instead of triples.
A023023 is the not necessarily strict version.
A078374 counts these partitions of any length, with Heinz numbers
A302796.
A220377 is the pairwise coprime instead of relatively prime version.
A284825 counts the case that is pairwise non-coprime also.
A337605 is the pairwise non-coprime instead of relatively prime version.
A008289 counts strict partitions by sum and length.
A007304 gives the Heinz numbers of 3-part strict partitions.
A307719 counts 3-part pairwise coprime partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
-
m:=3: with(numtheory): g:=sum(mobius(k)*x^(m*(m+1)/2*k)/Product(1-x^(i*k),i=1..m),k=1..20): gser:=series(g,x=0,80): seq(coeff(gser,x^n),n=6..77); # Emeric Deutsch, May 31 2005
-
Table[Length[Select[IntegerPartitions[n,{3}],UnsameQ@@#&&GCD@@#==1&]],{n,6,50}] (* Gus Wiseman, Oct 13 2020 *)
A000742
Number of compositions of n into 4 ordered relatively prime parts.
Original entry on oeis.org
1, 4, 10, 20, 34, 56, 80, 120, 154, 220, 266, 360, 420, 560, 614, 816, 884, 1120, 1210, 1540, 1572, 2020, 2080, 2544, 2638, 3276, 3200, 4060, 4040, 4840, 4896, 5960, 5710, 7140, 6954, 8216, 8136, 9880, 9244, 11480, 11010, 12824, 12650, 15180, 14024, 17276
Offset: 4
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 3):d in Divisors(n)]:n in[4..49]]; // Marius A. Burtea, Feb 08 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 3), d=divisors(n)):
seq(a(n), n=4..50); # Alois P. Heinz, Feb 05 2020
-
a[n_] := Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 3], {k, 1, n}]; Table[a[n], {n, 4, 51}] (* Jean-François Alcover, Feb 11 2016 *)
A023031
Number of compositions of n into 6 ordered relatively prime parts.
Original entry on oeis.org
1, 6, 21, 56, 126, 252, 461, 792, 1281, 2002, 2982, 4368, 6131, 8568, 11502, 15498, 20097, 26334, 33166, 42504, 52338, 65724, 79443, 98280, 116626, 142506, 166908, 201124, 232968, 278250, 317983, 376992, 427329, 501150, 564108, 658008, 732612
Offset: 6
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 5):d in Divisors(n)]:n in[6..42]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 5), d=divisors(n)):
seq(a(n), n=6..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[#-1, 5] MoebiusMu[n/#]&]; Array[a, 37, 6] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 5], {k, 1, n}]; Table[a[n], {n, 6, 45}] (* Vincenzo Librandi, Feb 06 2020 *)
A023032
Number of compositions of n into 7 ordered relatively prime parts.
Original entry on oeis.org
1, 7, 28, 84, 210, 462, 924, 1715, 3003, 4998, 8008, 12348, 18564, 27048, 38759, 54054, 74613, 100478, 134596, 176176, 230202, 294294, 376740, 471933, 593775, 731276, 905982, 1099560, 1344903, 1610322, 1947792, 2306220, 2759757, 3235484, 3838380
Offset: 7
-
[&+[MoebiusMu(n div d)*Binomial(d-1,6):d in Divisors(n)]:n in[7..41]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 6), d=divisors(n)):
seq(a(n), n=7..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[#-1, 6] MoebiusMu[n/#]&]; Array[a, 37, 7] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k-1, 6], {k, 1, n}]; Table[a[n], {n, 7, 45}] (* Vincenzo Librandi, Feb 07 2020 *)
A023035
Number of compositions of n into 10 ordered relatively prime parts.
Original entry on oeis.org
1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92377, 167960, 293920, 497420, 817135, 1307504, 2042755, 3124550, 4686110, 6906900, 10013002, 14307150, 20155070, 28048790, 38555660, 52451256, 70583095, 94143280, 124355000
Offset: 10
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 9):d in Divisors(n)]:n in[10..42]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 9), d=divisors(n)):
seq(a(n), n=10..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k -1, 9], {k, 1, n}]; Table[a[n], {n, 10, 45}] (* or *) Table[a[n],{n, 9, 45}] a[n_]:=DivisorSum[n, Binomial[#-1,9] MoebiusMu[n/#]&]; Array[a, 37, 10] (* Vincenzo Librandi, Feb 08 2020 *)
A101391
Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1
T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 3, 1;
0, 4, 6, 4, 1;
0, 2, 9, 10, 5, 1;
0, 6, 15, 20, 15, 6, 1;
0, 4, 18, 34, 35, 21, 7, 1;
0, 6, 27, 56, 70, 56, 28, 8, 1;
0, 4, 30, 80, 125, 126, 84, 36, 9, 1;
0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1;
0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
(15) (114) (1113) (11112) (111111)
(51) (123) (1122) (11121)
(132) (1131) (11211)
(141) (1212) (12111)
(213) (1221) (21111)
(231) (1311)
(312) (2112)
(321) (2121)
(411) (2211)
(3111)
Missing are: (42), (24), (33), (222).
(End)
- Alois P. Heinz, Rows n = 1..200, flattened
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A291166 ranks these compositions (evidently).
-
with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
end:
T:= (n, k)-> coeff(b(n,0),x,k):
seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, May 05 2025
-
t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
-
T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016
A023033
Number of compositions of n into 8 ordered relatively prime parts.
Original entry on oeis.org
1, 8, 36, 120, 330, 792, 1716, 3432, 6434, 11440, 19440, 31824, 50352, 77520, 116160, 170544, 244826, 346104, 479908, 657792, 886314, 1184040, 1557312, 2035800, 2623140, 3365736, 4260608, 5379616, 6704742, 8347680, 10263648, 12619464
Offset: 8
-
[&+[MoebiusMu(n div d)*Binomial(d-1,7):d in Divisors(n)]:n in[8..40]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 7), d=divisors(n)):
seq(a(n), n=8..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[# - 1, 7] MoebiusMu[n/#]&]; Array[a, 37, 8] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 7], {k, 1, n}]; Table[a[n], {n, 8, 45}] (* Vincenzo Librandi, Feb 07 2020 *)
A023034
Number of compositions of n into 9 ordered relatively prime parts.
Original entry on oeis.org
1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24309, 43758, 75573, 125970, 203445, 319770, 490149, 735471, 1081080, 1562274, 2218788, 3108105, 4289133, 5852925, 7882290, 10518255, 13871286, 18156204, 23511345, 30260340, 38564262, 48902997
Offset: 9
-
[&+[MoebiusMu(n div d)*Binomial(d-1,8):d in Divisors(n)]:n in[9..39]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 8), d=divisors(n)):
seq(a(n), n=9..50); # Alois P. Heinz, Feb 05 2020
-
Table[a[n],{n,9,45}]a[n_]:=DivisorSum[n, Binomial[#-1, 8] MoebiusMu[n/#]&]; Array[a, 37, 9] (* or *) a[n_]:=Sum[Boole[Divisible[n,k]] MoebiusMu[n/k] Binomial[k-1,8],{k,1,n}];Table[a[n],{n,9,45}] (* Vincenzo Librandi, Feb 08 2020 *)
A341912
Number of partitions of n into 5 distinct and relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 83, 101, 118, 141, 162, 192, 218, 255, 286, 333, 370, 427, 470, 540, 590, 673, 730, 831, 894, 1014, 1085, 1224, 1305, 1469, 1552, 1747, 1841, 2057, 2163, 2418, 2520, 2818, 2933, 3256, 3388, 3765, 3879, 4319, 4452, 4914, 5068
Offset: 15
Cf.
A000743,
A023022,
A023025,
A078374,
A101271,
A339672,
A340719,
A341868,
A341870,
A341913,
A341914.
-
nmax = 70; CoefficientList[Series[Sum[MoebiusMu[k] x^(15 k)/Product[1 - x^(j k), {j, 1, 5}], {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 15] &
Showing 1-10 of 10 results.
Comments