A023023
Number of partitions of n into 3 unordered relatively prime parts.
Original entry on oeis.org
1, 1, 2, 2, 4, 4, 6, 6, 10, 8, 14, 12, 16, 16, 24, 18, 30, 24, 32, 30, 44, 32, 50, 42, 54, 48, 70, 48, 80, 64, 80, 72, 96, 72, 114, 90, 112, 96, 140, 96, 154, 120, 144, 132, 184, 128, 196, 150, 192, 168, 234, 162, 240, 192, 240, 210, 290, 192, 310, 240, 288, 256, 336, 240, 374
Offset: 3
From _Gus Wiseman_, Oct 08 2020: (Start)
The a(3) = 1 through a(13) = 14 triples (A = 10, B = 11):
111 211 221 321 322 332 432 433 443 543 544
311 411 331 431 441 532 533 552 553
421 521 522 541 542 651 643
511 611 531 631 551 732 652
621 721 632 741 661
711 811 641 831 733
722 921 742
731 A11 751
821 832
911 841
922
931
A21
B11
(End)
A000837 counts these partitions of any length.
A001399(n-3) does not require relative primality.
A284825 counts the case that is also pairwise non-coprime.
A307719 is the pairwise coprime instead of relatively prime version.
A337599 is the pairwise non-coprime instead of relative prime version.
A008284 counts partitions by sum and length.
A078374 counts relatively prime strict partitions.
A337601 counts 3-part partitions whose distinct parts are pairwise coprime.
Cf.
A000010,
A000217,
A007434,
A055684,
A078374,
A200976,
A220377,
A302698,
A327516,
A337563,
A337600,
A337605.
-
Table[Length[Select[IntegerPartitions[n,{3}],GCD@@#==1&]],{n,3,50}] (* Gus Wiseman, Oct 08 2020 *)
A000742
Number of compositions of n into 4 ordered relatively prime parts.
Original entry on oeis.org
1, 4, 10, 20, 34, 56, 80, 120, 154, 220, 266, 360, 420, 560, 614, 816, 884, 1120, 1210, 1540, 1572, 2020, 2080, 2544, 2638, 3276, 3200, 4060, 4040, 4840, 4896, 5960, 5710, 7140, 6954, 8216, 8136, 9880, 9244, 11480, 11010, 12824, 12650, 15180, 14024, 17276
Offset: 4
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 3):d in Divisors(n)]:n in[4..49]]; // Marius A. Burtea, Feb 08 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 3), d=divisors(n)):
seq(a(n), n=4..50); # Alois P. Heinz, Feb 05 2020
-
a[n_] := Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 3], {k, 1, n}]; Table[a[n], {n, 4, 51}] (* Jean-François Alcover, Feb 11 2016 *)
A000743
Number of compositions of n into 5 ordered relatively prime parts.
Original entry on oeis.org
1, 5, 15, 35, 70, 125, 210, 325, 495, 700, 1000, 1330, 1820, 2305, 3060, 3750, 4830, 5775, 7315, 8490, 10625, 12155, 14880, 16835, 20475, 22620, 27405, 30100, 35750, 39100, 46360, 49655, 58905, 62985, 73320, 78340, 91390, 95720, 111930, 117425
Offset: 5
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 4):d in Divisors(n)]:n in[5..44]]; // Marius A. Burtea, Feb 08 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 4), d=divisors(n)):
seq(a(n), n=5..50); # Alois P. Heinz, Feb 05 2020
-
a[n_] := Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 4], {k, 1, n}]; Table[a[n], {n, 5, 52}] (* Jean-François Alcover, Feb 11 2016 *)
A023031
Number of compositions of n into 6 ordered relatively prime parts.
Original entry on oeis.org
1, 6, 21, 56, 126, 252, 461, 792, 1281, 2002, 2982, 4368, 6131, 8568, 11502, 15498, 20097, 26334, 33166, 42504, 52338, 65724, 79443, 98280, 116626, 142506, 166908, 201124, 232968, 278250, 317983, 376992, 427329, 501150, 564108, 658008, 732612
Offset: 6
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 5):d in Divisors(n)]:n in[6..42]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 5), d=divisors(n)):
seq(a(n), n=6..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[#-1, 5] MoebiusMu[n/#]&]; Array[a, 37, 6] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 5], {k, 1, n}]; Table[a[n], {n, 6, 45}] (* Vincenzo Librandi, Feb 06 2020 *)
A023035
Number of compositions of n into 10 ordered relatively prime parts.
Original entry on oeis.org
1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92377, 167960, 293920, 497420, 817135, 1307504, 2042755, 3124550, 4686110, 6906900, 10013002, 14307150, 20155070, 28048790, 38555660, 52451256, 70583095, 94143280, 124355000
Offset: 10
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 9):d in Divisors(n)]:n in[10..42]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 9), d=divisors(n)):
seq(a(n), n=10..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k -1, 9], {k, 1, n}]; Table[a[n], {n, 10, 45}] (* or *) Table[a[n],{n, 9, 45}] a[n_]:=DivisorSum[n, Binomial[#-1,9] MoebiusMu[n/#]&]; Array[a, 37, 10] (* Vincenzo Librandi, Feb 08 2020 *)
A101391
Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1
T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 3, 1;
0, 4, 6, 4, 1;
0, 2, 9, 10, 5, 1;
0, 6, 15, 20, 15, 6, 1;
0, 4, 18, 34, 35, 21, 7, 1;
0, 6, 27, 56, 70, 56, 28, 8, 1;
0, 4, 30, 80, 125, 126, 84, 36, 9, 1;
0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1;
0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
(15) (114) (1113) (11112) (111111)
(51) (123) (1122) (11121)
(132) (1131) (11211)
(141) (1212) (12111)
(213) (1221) (21111)
(231) (1311)
(312) (2112)
(321) (2121)
(411) (2211)
(3111)
Missing are: (42), (24), (33), (222).
(End)
- Alois P. Heinz, Rows n = 1..200, flattened
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A291166 ranks these compositions (evidently).
-
with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
end:
T:= (n, k)-> coeff(b(n,0),x,k):
seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, May 05 2025
-
t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
-
T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016
A023033
Number of compositions of n into 8 ordered relatively prime parts.
Original entry on oeis.org
1, 8, 36, 120, 330, 792, 1716, 3432, 6434, 11440, 19440, 31824, 50352, 77520, 116160, 170544, 244826, 346104, 479908, 657792, 886314, 1184040, 1557312, 2035800, 2623140, 3365736, 4260608, 5379616, 6704742, 8347680, 10263648, 12619464
Offset: 8
-
[&+[MoebiusMu(n div d)*Binomial(d-1,7):d in Divisors(n)]:n in[8..40]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 7), d=divisors(n)):
seq(a(n), n=8..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[# - 1, 7] MoebiusMu[n/#]&]; Array[a, 37, 8] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 7], {k, 1, n}]; Table[a[n], {n, 8, 45}] (* Vincenzo Librandi, Feb 07 2020 *)
A023034
Number of compositions of n into 9 ordered relatively prime parts.
Original entry on oeis.org
1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24309, 43758, 75573, 125970, 203445, 319770, 490149, 735471, 1081080, 1562274, 2218788, 3108105, 4289133, 5852925, 7882290, 10518255, 13871286, 18156204, 23511345, 30260340, 38564262, 48902997
Offset: 9
-
[&+[MoebiusMu(n div d)*Binomial(d-1,8):d in Divisors(n)]:n in[9..39]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 8), d=divisors(n)):
seq(a(n), n=9..50); # Alois P. Heinz, Feb 05 2020
-
Table[a[n],{n,9,45}]a[n_]:=DivisorSum[n, Binomial[#-1, 8] MoebiusMu[n/#]&]; Array[a, 37, 9] (* or *) a[n_]:=Sum[Boole[Divisible[n,k]] MoebiusMu[n/k] Binomial[k-1,8],{k,1,n}];Table[a[n],{n,9,45}] (* Vincenzo Librandi, Feb 08 2020 *)
A339672
Number of partitions of n into 7 distinct and relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 21, 28, 38, 49, 65, 82, 105, 131, 164, 201, 248, 300, 364, 436, 522, 618, 733, 860, 1009, 1175, 1366, 1579, 1823, 2093, 2398, 2738, 3117, 3539, 4006, 4526, 5095, 5731, 6419, 7190, 8018, 8946, 9932, 11044, 12213, 13534, 14912, 16475, 18089, 19928, 21808
Offset: 28
Cf.
A023022,
A023027,
A023032,
A078374,
A101271,
A340719,
A341868,
A341870,
A341912,
A341913,
A341914.
-
nmax = 80; CoefficientList[Series[Sum[MoebiusMu[k] x^(28 k)/Product[1 - x^(j k), {j, 1, 7}], {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 28] &
Showing 1-9 of 9 results.
Comments