A000742
Number of compositions of n into 4 ordered relatively prime parts.
Original entry on oeis.org
1, 4, 10, 20, 34, 56, 80, 120, 154, 220, 266, 360, 420, 560, 614, 816, 884, 1120, 1210, 1540, 1572, 2020, 2080, 2544, 2638, 3276, 3200, 4060, 4040, 4840, 4896, 5960, 5710, 7140, 6954, 8216, 8136, 9880, 9244, 11480, 11010, 12824, 12650, 15180, 14024, 17276
Offset: 4
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 3):d in Divisors(n)]:n in[4..49]]; // Marius A. Burtea, Feb 08 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 3), d=divisors(n)):
seq(a(n), n=4..50); # Alois P. Heinz, Feb 05 2020
-
a[n_] := Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 3], {k, 1, n}]; Table[a[n], {n, 4, 51}] (* Jean-François Alcover, Feb 11 2016 *)
A000743
Number of compositions of n into 5 ordered relatively prime parts.
Original entry on oeis.org
1, 5, 15, 35, 70, 125, 210, 325, 495, 700, 1000, 1330, 1820, 2305, 3060, 3750, 4830, 5775, 7315, 8490, 10625, 12155, 14880, 16835, 20475, 22620, 27405, 30100, 35750, 39100, 46360, 49655, 58905, 62985, 73320, 78340, 91390, 95720, 111930, 117425
Offset: 5
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 4):d in Divisors(n)]:n in[5..44]]; // Marius A. Burtea, Feb 08 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 4), d=divisors(n)):
seq(a(n), n=5..50); # Alois P. Heinz, Feb 05 2020
-
a[n_] := Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 4], {k, 1, n}]; Table[a[n], {n, 5, 52}] (* Jean-François Alcover, Feb 11 2016 *)
A023031
Number of compositions of n into 6 ordered relatively prime parts.
Original entry on oeis.org
1, 6, 21, 56, 126, 252, 461, 792, 1281, 2002, 2982, 4368, 6131, 8568, 11502, 15498, 20097, 26334, 33166, 42504, 52338, 65724, 79443, 98280, 116626, 142506, 166908, 201124, 232968, 278250, 317983, 376992, 427329, 501150, 564108, 658008, 732612
Offset: 6
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 5):d in Divisors(n)]:n in[6..42]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 5), d=divisors(n)):
seq(a(n), n=6..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[#-1, 5] MoebiusMu[n/#]&]; Array[a, 37, 6] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 5], {k, 1, n}]; Table[a[n], {n, 6, 45}] (* Vincenzo Librandi, Feb 06 2020 *)
A023032
Number of compositions of n into 7 ordered relatively prime parts.
Original entry on oeis.org
1, 7, 28, 84, 210, 462, 924, 1715, 3003, 4998, 8008, 12348, 18564, 27048, 38759, 54054, 74613, 100478, 134596, 176176, 230202, 294294, 376740, 471933, 593775, 731276, 905982, 1099560, 1344903, 1610322, 1947792, 2306220, 2759757, 3235484, 3838380
Offset: 7
-
[&+[MoebiusMu(n div d)*Binomial(d-1,6):d in Divisors(n)]:n in[7..41]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 6), d=divisors(n)):
seq(a(n), n=7..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[#-1, 6] MoebiusMu[n/#]&]; Array[a, 37, 7] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k-1, 6], {k, 1, n}]; Table[a[n], {n, 7, 45}] (* Vincenzo Librandi, Feb 07 2020 *)
A023035
Number of compositions of n into 10 ordered relatively prime parts.
Original entry on oeis.org
1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92377, 167960, 293920, 497420, 817135, 1307504, 2042755, 3124550, 4686110, 6906900, 10013002, 14307150, 20155070, 28048790, 38555660, 52451256, 70583095, 94143280, 124355000
Offset: 10
-
[&+[MoebiusMu(n div d)*Binomial(d-1, 9):d in Divisors(n)]:n in[10..42]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 9), d=divisors(n)):
seq(a(n), n=10..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k -1, 9], {k, 1, n}]; Table[a[n], {n, 10, 45}] (* or *) Table[a[n],{n, 9, 45}] a[n_]:=DivisorSum[n, Binomial[#-1,9] MoebiusMu[n/#]&]; Array[a, 37, 10] (* Vincenzo Librandi, Feb 08 2020 *)
A101391
Triangle read by rows: T(n,k) is the number of compositions of n into k parts x_1, x_2, ..., x_k such that gcd(x_1,x_2,...,x_k) = 1 (1<=k<=n).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 2, 3, 1, 0, 4, 6, 4, 1, 0, 2, 9, 10, 5, 1, 0, 6, 15, 20, 15, 6, 1, 0, 4, 18, 34, 35, 21, 7, 1, 0, 6, 27, 56, 70, 56, 28, 8, 1, 0, 4, 30, 80, 125, 126, 84, 36, 9, 1, 0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1, 0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1
Offset: 1
T(6,3)=9 because we have 411,141,114 and the six permutations of 123 (222 does not qualify).
T(8,3)=18 because binomial(0,2)*mobius(8/1)+binomial(1,2)*mobius(8/2)+binomial(3,2)*mobius(8/4)+binomial(7,2)*mobius(8/8)=0+0+(-3)+21=18.
Triangle begins:
1;
0, 1;
0, 2, 1;
0, 2, 3, 1;
0, 4, 6, 4, 1;
0, 2, 9, 10, 5, 1;
0, 6, 15, 20, 15, 6, 1;
0, 4, 18, 34, 35, 21, 7, 1;
0, 6, 27, 56, 70, 56, 28, 8, 1;
0, 4, 30, 80, 125, 126, 84, 36, 9, 1;
0, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
0, 4, 42, 154, 325, 461, 462, 330, 165, 55, 11, 1;
0, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
...
From _Gus Wiseman_, Oct 19 2020: (Start)
Row n = 6 counts the following compositions:
(15) (114) (1113) (11112) (111111)
(51) (123) (1122) (11121)
(132) (1131) (11211)
(141) (1212) (12111)
(213) (1221) (21111)
(231) (1311)
(312) (2112)
(321) (2121)
(411) (2211)
(3111)
Missing are: (42), (24), (33), (222).
(End)
- Alois P. Heinz, Rows n = 1..200, flattened
- H. W. Gould, Binomial coefficients, the bracket function and compositions with relatively prime summands, Fib. Quart. 2(4) (1964), 241-260.
- Temba Shonhiwa, Compositions with pairwise relatively prime summands within a restricted setting, Fibonacci Quart. 44 (2006), no. 4, 316-323.
A000837 counts relatively prime partitions.
A135278 counts compositions by length.
A282748 is the pairwise coprime instead of relatively prime version.
A291166 ranks these compositions (evidently).
-
with(numtheory): T:=proc(n,k) local d, j, b: d:=divisors(n): for j from 1 to tau(n) do b[j]:=binomial(d[j]-1,k-1)*mobius(n/d[j]) od: sum(b[i],i=1..tau(n)) end: for n from 1 to 14 do seq(T(n,k),k=1..n) od; # yields the sequence in triangular form
# second Maple program:
b:= proc(n, g) option remember; `if`(n=0, `if`(g=1, 1, 0),
expand(add(b(n-j, igcd(g, j))*x, j=1..n)))
end:
T:= (n, k)-> coeff(b(n,0),x,k):
seq(seq(T(n,k), k=1..n), n=1..14); # Alois P. Heinz, May 05 2025
-
t[n_, k_] := Sum[Binomial[d-1, k-1]*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n, k], {n, 2, 14}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n,{k}],GCD@@#==1&]],{n,10},{k,2,n}] (* change {k,2,n} to {k,1,n} for the version with zeros. - Gus Wiseman, Oct 19 2020 *)
-
T(n, k) = sumdiv(n, d, binomial(d-1, k-1)*moebius(n/d)); \\ Michel Marcus, Mar 09 2016
A023033
Number of compositions of n into 8 ordered relatively prime parts.
Original entry on oeis.org
1, 8, 36, 120, 330, 792, 1716, 3432, 6434, 11440, 19440, 31824, 50352, 77520, 116160, 170544, 244826, 346104, 479908, 657792, 886314, 1184040, 1557312, 2035800, 2623140, 3365736, 4260608, 5379616, 6704742, 8347680, 10263648, 12619464
Offset: 8
-
[&+[MoebiusMu(n div d)*Binomial(d-1,7):d in Divisors(n)]:n in[8..40]]; // Marius A. Burtea, Feb 07 2020
-
with(numtheory):
a:= n-> add(mobius(n/d)*binomial(d-1, 7), d=divisors(n)):
seq(a(n), n=8..50); # Alois P. Heinz, Feb 05 2020
-
a[n_]:=DivisorSum[n, Binomial[# - 1, 7] MoebiusMu[n/#]&]; Array[a, 37, 8] (* or *) a[n_]:=Sum[Boole[Divisible[n, k]] MoebiusMu[n/k] Binomial[k - 1, 7], {k, 1, n}]; Table[a[n], {n, 8, 45}] (* Vincenzo Librandi, Feb 07 2020 *)
A341913
Number of partitions of n into 9 distinct and relatively prime parts.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 94, 123, 157, 201, 252, 318, 393, 488, 598, 732, 887, 1076, 1291, 1549, 1845, 2194, 2592, 3060, 3589, 4206, 4904, 5708, 6615, 7657, 8824, 10156, 11648, 13338, 15224, 17354, 19720, 22380, 25330, 28629, 32277, 36347, 40829, 45812, 51291, 57358
Offset: 45
Cf.
A023022,
A023029,
A023034,
A078374,
A101271,
A339672,
A340719,
A341868,
A341870,
A341912,
A341914.
-
nmax = 97; CoefficientList[Series[Sum[MoebiusMu[k] x^(45 k)/Product[1 - x^(j k), {j, 1, 9}], {k, 1, nmax}], {x, 0, nmax}], x] // Drop[#, 45] &
Showing 1-8 of 8 results.
Comments