A059442 Array of Ramsey numbers R(n,k) (n >= 2, k >= 2) read by antidiagonals.
2, 3, 3, 4, 6, 4, 5, 9, 9, 5, 6, 14, 18, 14, 6, 7, 18, 25, 25, 18, 7, 8, 23
Offset: 0
Examples
Array R(n,k), n >= 2, k >= 2, begins: 2, 3, 4, 5, 6, 7, 8, 9, 10, 3, 6, 9, 14, 18, 23, 28, 36, 4, 9, 18, 25, ?, ?, ?, 5, 14, 25, ?, ?, ?, 6, 18, ?, ?, ?, 7, 23, ?, ?, 8, 28, ?, 9, 36, 10,
References
- G. Berman and K. D. Fryer, Introduction to Combinatorics. Academic Press, NY, 1972, p. 175.
- T. Bohman and P. Keevash. Dynamic concentration of the triangle-free process. Random Structures & Algorithms, 58.2 (2021), 221-293.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 288.
- H. J. Ryser, Combinatorial Mathematics, Chapter 4 - A Theorem of Ramsey, Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 42.
- J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 840.
- G. Fiz Pontiveros, S. Griffiths, and R. Morris. The triangle-free process and the Ramsey number R(3, k). Mem. Amer. Math. Soc., 263.1274 (2020), v+125.
- H. J. Ryser, Combinatorial Mathematics. Mathematical Association of America, Carus Mathematical Monograph 14, 1963, p. 42.
Links
- Vigleik Angeltveit and Brendan D. McKay, R(5,5) <= 48, arXiv:1703.08768 [math.CO], 2017.
- Thomas Bloom, Problem 77, Problem 78, Problem 87, Problem 545, and Problem 986, Erdős Problems.
- Marcelo Campos, Simon Griffiths, Robert Morris, and Julian Sahasrabudhe, An exponential improvement for diagonal Ramsey, arXiv preprint arXiv:2303.09521 [math.CO], 2023.
- Geoff Exoo, Ramsey Numbers.
- R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math., 7 (1955), 1-7.
- R. Getschmann, Enumeration of Small Ramsey Graphs.
- Jan Goedgebeur and Stanisław P. Radziszowski, New Computational Upper Bounds for Ramsey Numbers R(3,k), arXiv:1210.5826 [math.CO], 2012-2013.
- R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math., 7 (1955), 1-7.
- J. G. Kalbfleisch, Construction of special edge-chromatic graphs, Canad. Math. Bull., 8 (1965), 575-584.
- Jeong Han Kim, The Ramsey number R(3, t) has order of magnitude t^2/log t, Random Structures & Algorithms Vol. 7, No. 3 (1995), pp. 173-207.
- Richard L. Kramer, Ricardo's Ramsey Number Page.
- Imre Leader, Friends and Strangers.
- Math Reference Project, Ramsey Numbers.
- Mathematical Database, Ramsey's Theory.
- Sam Mattheus and Jacques Verstraete, The asymptotics of r(4,t), arXiv:2306.04007 [math.CO], 2023-2024. [Studies R(4,k)]
- Online Dictionary of Combinatorics, Ramsey's Theorem.
- Ivars Peterson, Math Trek, Party Games, Science News Online, Vol. 156, No. 23, Dec 04 1999.
- Ivars Peterson, Math Trek, Party Games, Dec 06 1999.
- Terence Tao, Erdős problem database, see nos. 77-78, 87, 545, 986.
- Stanislaw Radziszowski, Small Ramsey Numbers, The Electronic Journal of Combinatorics, Dynamic Surveys, DS1, Mar 3 2017.
- Eric Weisstein's World of Mathematics, Ramsey Number.
- Wikipedia, Ramsey's theorem.
- Jin Xu and C. K. Wong, Self-complementary graphs and Ramsey numbers I, Discrete Math., 223 (2000), 309-326.
Crossrefs
Formula
From Joerg Arndt, Jun 01 2012: (Start)
The antidiagonals are symmetric.
R(r, 1) = R(1, r) = 1,
R(r, 2) = R(2, r) = r,
R(r, s) <= R(r-1, s) + R(r, s-1),
R(r, s) <= R(r-1, s) + R(r, s-1) - 1 if R(r-1, s) and R(r, s-1) are both even,
R(r, r) <= 4 * R(r, r-2) + 2. (End)
Extensions
Next term is in the range 35-41.
More terms in example section (antidiagonals 6-10; cf. A000791) from Omar E. Pol, Jun 11 2012
Edited by N. J. A. Sloane, Nov 05 2023
Comments