A000902 Expansion of e.g.f. (1/2)*(exp(2*x + x^2) + 1).
1, 1, 3, 10, 38, 156, 692, 3256, 16200, 84496, 460592, 2611104, 15355232, 93376960, 585989952, 3786534784, 25152768128, 171474649344, 1198143415040, 8569374206464, 62668198184448, 468111364627456, 3568287053001728
Offset: 0
References
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=0..200
- Aram Bingham and Özlem Uğurlu, Sects, rooks, pyramids, partitions and paths for type DIII clans, arXiv:1907.08875 [math.CO], 2019.
- Aram Bingham and Özlem Uğurlu, DIII clan combinatorics for the orthogonal Grassmannian, Australasian J. of Combinatorics (2021) Vol. 79, No. 1, 55-86.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- Édouard Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.
- Édouard Lucas, Théorie des nombres (annotated scans of a few selected pages)
- B. Pittel, Where the typical set partitions meet and join, Electron. J. of Combin. 7, R5.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
Crossrefs
Equals 1/2 * A000898(n) for n>0.
Programs
-
Haskell
a000902 n = a000902_list !! n a000902_list = 1 : 1 : 3 : map (* 2) (zipWith (+) (drop 2 a000902_list) (zipWith (*) [2..] $ tail a000902_list)) -- Reinhard Zumkeller, Sep 10 2013
-
Magma
a:=[1,3]; [1] cat [n le 2 select a[n] else 2*Self(n-1) + (2*n-2)*Self(n-2):n in [1..22]]; // Marius A. Burtea, Feb 12 2020
-
Maple
# Comment from the authors: For Maple program see A000903. A000902 := n -> `if`(n=0, 1, I^(-n)*orthopoly[H](n, I)/2): seq(A000902(n), n=0..22); # Peter Luschny, Nov 29 2017
-
Mathematica
n = 22; CoefficientList[ Series[(1/2)*(Exp[2*x+x^2] + 1), {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *) With[{nn=30},CoefficientList[Series[(Exp[2x+x^2]+1)/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 27 2025 *)
Formula
a(n) = 2*a(n-1) + (2n-2)*a(n-2) for n >= 3. - N. J. A. Sloane, Sep 23 2006
a(n) = 1 + n!/(2e) * [x^n] Sum[l>=0, 1/l! * {(1+x)^l-1}^2].
For asymptotics see the Robinson paper.
But the asymptotic formula in the Robinson paper is wrong (see A000898, discussion from Oct 01 2013). - Vaclav Kotesovec, Aug 04 2014
a(n) ~ 2^(n/2-3/2) * n^(n/2) * exp(sqrt(2*n)-n/2-1/2). - Vaclav Kotesovec, Aug 04 2014
a(n) = (i/2)^(1 - n)*KummerU((1 - n)/2, 3/2, -1) for n>=1. - Peter Luschny, Nov 29 2017
a(n) = Sum_{r=0..floor(n/2)} 2^(n-2r-1) * {(n!)/(r!(n-2r)!)}. - Aram Bingham, Feb 08 2020
Comments