A000917 a(n) = (2n+3)!/(n!*(n+2)!).
3, 20, 105, 504, 2310, 10296, 45045, 194480, 831402, 3527160, 14872858, 62403600, 260757900, 1085822640, 4508102925, 18668849760, 77138650050, 318107374200, 1309542023790, 5382578744400, 22093039119060, 90567738003600, 370847442355650, 1516927277253024
Offset: 0
References
- Eldon R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 99, (5.27.9).
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- Jian Zhou, On Some Mathematics Related to the Interpolating Statistics, arXiv:2108.10514 [math-ph], 2021.
Crossrefs
Programs
-
Magma
[(n+1)*Binomial(2*n+3, n+1): n in [0..25]]; // Vincenzo Librandi, Jun 01 2016
-
Maple
a := proc(n) (n+1)*binomial(2*n+3, n+2) end: seq(a(n), n=0..23); # Zerinvary Lajos, Nov 26 2006 seq((n+1)*binomial(2*n+4, n+2)/2, n=0..23); # Zerinvary Lajos, Feb 28 2007
-
Mathematica
Table[(2*n + 3)!/(n!*(n + 2)!), {n, 0, 25}] (* T. D. Noe, Jun 20 2012 *)
Formula
a(n) = (n+1)*binomial(2*n+3, n+1) = (n+1)*A001700(n+1). - Vincenzo Librandi, Jun 01 2016
a(n) = (2*n+3)*A001791(n+1). - R. J. Mathar, Nov 09 2021
D-finite with recurrence +(n+2)*a(n) +10*(-n-1)*a(n-1) +12*(2*n+1)*a(n-2)=0. - R. J. Mathar, Nov 09 2021
D-finite with recurrence n*(n+2)*a(n) -2*(2*n+3)*(n+1)*a(n-1)=0. - R. J. Mathar, Nov 09 2021
From Amiram Eldar, Jan 24 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 - Pi/(3*sqrt(3)) = 1 - A073010.
Sum_{n>=0} (-1)^n/a(n) = 6*log(phi)/sqrt(5) - 1, where phi is the golden ratio (A001622). (End)
Comments