cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A038697 Convolution of A000917 with A000984 (central binomial coefficients).

Original entry on oeis.org

3, 26, 163, 894, 4558, 22196, 104739, 483062, 2189530, 9789900, 43295118, 189749676, 825364668, 3567219688, 15332925731, 65591312550, 279415474594, 1185903736412, 5016725589402, 21159849864964, 89012979703940
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A007054 (Super ballot numbers) with A002697;

Crossrefs

Programs

  • Maple
    seq(n*4^(n+1)+binomial(2*n+3,n+1),n=0..30); # Robert Israel, May 22 2019

Formula

a(n) = n*4^(n+1)+binomial(2*n+3, n+1).
G.f.: c(x)*(4-c(x))/(1-4*x)^2, where c(x) = g.f. for Catalan numbers A000108.
(160+64*n)*a(n) - (160+48*n)*a(n+1) + (50+12*n)*a(n+2) - (5+n)*a(n+3)=0. - Robert Israel, May 22 2019

A036987 Fredholm-Rueppel sequence.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Binary representation of the Kempner-Mahler number Sum_{k>=0} 1/2^(2^k) = A007404.
a(n) = (product of digits of n; n in binary notation) mod 2. This sequence is a transformation of the Thue-Morse sequence (A010060), since there exists a function f such that f(sum of digits of n) = (product of digits of n). - Ctibor O. Zizka, Feb 12 2008
a(n-1), n >= 1, the characteristic sequence for powers of 2, A000079, is the unique solution of the following formal product and formal power series identity: Product_{j>=1} (1 + a(j-1)*x^j) = 1 + Sum_{k>=1} x^k = 1/(1-x). The product is therefore Product_{l>=1} (1 + x^(2^l)). Proof. Compare coefficients of x^n and use the binary representation of n. Uniqueness follows from the recurrence relation given for the general case under A147542. - Wolfdieter Lang, Mar 05 2009
a(n) is also the number of orbits of length n for the map x -> 1-cx^2 on [-1,1] at the Feigenbaum critical value c=1.401155... . - Thomas Ward, Apr 08 2009
A054525 (Mobius transform) * A001511 = A036987 = A047999^(-1) * A001511 = the inverse of Sierpiński's gasket * the ruler sequence. - Gary W. Adamson, Oct 26 2009 [Of course this is only vaguely correct depending on how the fuzzy indexing in these formulas is made concrete. - R. J. Mathar, Jun 20 2014]
Characteristic function of A000225. - Reinhard Zumkeller, Mar 06 2012
Also parity of the Catalan numbers A000108. - Omar E. Pol, Jan 17 2012
For n >= 2, also the largest exponent k >= 0 such that n^k in binary notation does not contain both 0 and 1. Unlike for the decimal version of this sequence, A062518, where the terms are only conjectural, for this sequence the values of a(n) can be proved to be the characteristic function of A000225, as follows: n^k will contain both 0 and 1 unless n^k = 2^r-1 for some r. But this is a special case of Catalan's equation x^p = y^q-1, which was proved by Preda Mihăilescu to have no nontrivial solution except 2^3 = 3^2 - 1. - Christopher J. Smyth, Aug 22 2014
Image, under the coding a,b -> 1; c -> 0, of the fixed point, starting with a, of the morphism a -> ab, b -> cb, c -> cc. - Jeffrey Shallit, May 14 2016
Number of nonisomorphic Boolean algebras of order n+1. - Jianing Song, Jan 23 2020

Examples

			G.f. = 1 + x + x^3 + x^7 + x^15 + x^31 + x^63 + x^127 + x^255 + x^511 + ...
a(7) = 1 since 7 = 2^3 - 1, while a(10) = 0 since 10 is not of the form 2^k - 1 for any integer k.
		

Crossrefs

The first row of A073346. Occurs for first time in A073202 as row 6 (and again as row 8).
Congruent to any of the sequences A000108, A007460, A007461, A007463, A007464, A061922, A068068 reduced modulo 2. Characteristic function of A000225.
If interpreted with offset=1 instead of 0 (i.e., a(1)=1, a(2)=1, a(3)=0, a(4)=1, ...) then this is the characteristic function of 2^n (A000079) and as such occurs as the first row of A073265. Also, in that case the INVERT transform will produce A023359.
This is Guy Steele's sequence GS(1, 3), also GS(3, 1) (see A135416).
Cf. A054525, A047999. - Gary W. Adamson, Oct 26 2009

Programs

  • Haskell
    a036987 n = ibp (n+1) where
       ibp 1 = 1
       ibp n = if r > 0 then 0 else ibp n' where (n',r) = divMod n 2
    a036987_list = 1 : f [0,1] where f (x:y:xs) = y : f (x:xs ++ [x,x+y])
    -- Same list generator function as for a091090_list, cf. A091090.
    -- Reinhard Zumkeller, May 19 2015, Apr 13 2013, Mar 13 2013
    
  • Maple
    A036987:= n-> `if`(2^ilog2(n+1) = n+1, 1, 0):
    seq(A036987(n), n=0..128);
  • Mathematica
    RealDigits[ N[ Sum[1/10^(2^n), {n, 0, Infinity}], 110]][[1]]
    (* Recurrence: *)
    t[n_, 1] = 1; t[1, k_] = 1;
    t[n_, k_] := t[n, k] =
      If[n < k, If[n > 1 && k > 1, -Sum[t[k - i, n], {i, 1, n - 1}], 0],
       If[n > 1 && k > 1, Sum[t[n - i, k], {i, 1, k - 1}], 0]];
    Table[t[n, k], {k, n, n}, {n, 104}]
    (* Mats Granvik, Jun 03 2011 *)
    mb2d[n_]:=1 - Module[{n2 = IntegerDigits[n, 2]}, Max[n2] - Min[n2]]; Array[mb2d, 120, 0] (* Vincenzo Librandi, Jul 19 2019 *)
    Table[PadRight[{1},2^k,0],{k,0,7}]//Flatten (* Harvey P. Dale, Apr 23 2022 *)
  • PARI
    {a(n) =( n++) == 2^valuation(n, 2)}; /* Michael Somos, Aug 25 2003 */
    
  • PARI
    a(n) = !bitand(n, n+1); \\ Ruud H.G. van Tol, Apr 05 2023
    
  • Python
    from sympy import catalan
    def a(n): return catalan(n)%2 # Indranil Ghosh, May 25 2017
    
  • Python
    def A036987(n): return int(not(n&(n+1))) # Chai Wah Wu, Jul 06 2022

Formula

1 followed by a string of 2^k - 1 0's. Also a(n)=1 iff n = 2^m - 1.
a(n) = a(floor(n/2)) * (n mod 2) for n>0 with a(0)=1. - Reinhard Zumkeller, Aug 02 2002 [Corrected by Mikhail Kurkov, Jul 16 2019]
Sum_{n>=0} 1/10^(2^n) = 0.110100010000000100000000000000010...
1 if n=0, floor(log_2(n+1)) - floor(log_2(n)) otherwise. G.f.: (1/x) * Sum_{k>=0} x^(2^k) = Sum_{k>=0} x^(2^k-1). - Ralf Stephan, Apr 28 2003
a(n) = 1 - A043545(n). - Michael Somos, Aug 25 2003
a(n) = -Sum_{d|n+1} mu(2*d). - Benoit Cloitre, Oct 24 2003
Dirichlet g.f. for right-shifted sequence: 2^(-s)/(1-2^(-s)).
a(n) = A000108(n) mod 2 = A001405(n) mod 2. - Paul Barry, Nov 22 2004
a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(n,k)*Sum_{j=0..k} binomial(k, 2^j-1). - Paul Barry, Jun 01 2006
A000523(n+1) = Sum_{k=1..n} a(k). - Mitch Harris, Jul 22 2011
a(n) = A209229(n+1). - Reinhard Zumkeller, Mar 07 2012
a(n) = Sum_{k=1..n} A191898(n,k)*cos(Pi*(n-1)*(k-1))/n; (conjecture). - Mats Granvik, Mar 04 2013
a(n) = A000035(A000108(n)). - Omar E. Pol, Aug 06 2013
a(n) = 1 iff n=2^k-1 for some k, 0 otherwise. - M. F. Hasler, Jun 20 2014
a(n) = ceiling(log_2(n+2)) - ceiling(log_2(n+1)). - Gionata Neri, Sep 06 2015
From John M. Campbell, Jul 21 2016: (Start)
a(n) = (A000168(n-1) mod 2).
a(n) = (A000531(n+1) mod 2).
a(n) = (A000699(n+1) mod 2).
a(n) = (A000891(n) mod 2).
a(n) = (A000913(n-1) mod 2), for n>1.
a(n) = (A000917(n-1) mod 2), for n>0.
a(n) = (A001142(n) mod 2).
a(n) = (A001246(n) mod 2).
a(n) = (A001246(n) mod 4).
a(n) = (A002057(n-2) mod 2), for n>1.
a(n) = (A002430(n+1) mod 2). (End)
a(n) = 2 - A043529(n). - Antti Karttunen, Nov 19 2017
a(n) = floor(1+log(n+1)/log(2)) - floor(log(2n+1)/log(2)). - Adriano Caroli, Sep 22 2019
This is also the decimal expansion of -Sum_{k>=1} mu(2*k)/(10^k - 1), where mu is the Möbius function (A008683). - Amiram Eldar, Jul 12 2020

Extensions

Edited by M. F. Hasler, Jun 20 2014

A146305 Array T(n,m) = 2*(2m+3)!*(4n+2m+1)!/(m!*(m+2)!*n!*(3n+2m+3)!) read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 3, 5, 5, 13, 20, 21, 14, 68, 100, 105, 84, 42, 399, 570, 595, 504, 330, 132, 2530, 3542, 3675, 3192, 2310, 1287, 429, 16965, 23400, 24150, 21252, 16170, 10296, 5005, 1430, 118668, 161820, 166257, 147420, 115500, 78936, 45045, 19448, 4862, 857956
Offset: 0

Views

Author

R. J. Mathar, Oct 29 2008

Keywords

Comments

T(n,m) is the number of rooted nonseparable (2-connected) triangulations of the disk with n internal nodes and 3 + m nodes on the external face. The triangulation has 2*n + m + 1 triangles and 3*(n+1) + 2*m edges. - Andrew Howroyd, Feb 21 2021

Examples

			The array starts at row n=0 and column m=0 as
.....1......2.......5......14.......42.......132
.....1......5......21......84......330......1287
.....3.....20.....105.....504.....2310.....10296
....13....100.....595....3192....16170.....78936
....68....570....3675...21252...115500....602316
...399...3542...24150..147420...844074...4628052
..2530..23400..166257.1057224..6301680..35939904
.16965.161820.1186680.7791168.47948670.282285432
		

Crossrefs

Columns m=0..3 are A000260, A197271(n+1), A341853, A341854.
Rows n=0..2 are A000108(n+1), A002054(n+1) and A000917.
Antidiagonal sums are A000260(n+1).
Cf. A169808 (unrooted), A169809 (achiral), A262586 (oriented).

Programs

  • Maple
    A146305 := proc(n,m)
        2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ;
    end proc:
    for d from 0 to 13 do
        for m from 0 to d do
            printf("%d,", A146305(d-m,m)) ;
        end do:
    end do:
  • Mathematica
    T[n_, m_] := 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)!; Table[T[n-m, m], {n, 0, 13}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jan 06 2014, after Maple *)
  • PARI
    T(n,m)={2*(2*m+3)!*(4*n+2*m+1)!/(m!*(m+2)!*n!*(3*n+2*m+3)!)} \\ Andrew Howroyd, Feb 21 2021

A097070 Consider all compositions (ordered partitions) of n into n parts, allowing zeros. E.g., for n = 3 we get 300, 030, 003, 210, 120, 201, 102, 021, 012, 111. Then a(n) is the total number of 1's.

Original entry on oeis.org

1, 2, 9, 40, 175, 756, 3234, 13728, 57915, 243100, 1016158, 4232592, 17577014, 72804200, 300874500, 1240940160, 5109183315, 21002455980, 86213785350, 353452638000, 1447388552610, 5920836618840, 24197138082780, 98801168731200, 403095046038750, 1643337883690776, 6694900194799404
Offset: 1

Views

Author

Amy J. Kolan, Sep 15 2004

Keywords

Comments

Number of compositions of n into n parts, allowing zeros = binomial(2*n-1,n) = A088218 = essentially A001700.

Examples

			The compositions for n=2 are 20, 02, 11. There are two 1's in these so a(2) = 2.
From _Robert G. Wilson v_, Sep 16 2004: (Start)
The case n = 5:
A. There are 5 combinations associated with the numbers 50000: 50000, 05000, 00500, 00050, 00005.
B. There are 20 combinations associated with the numbers 41000.
C. There are 20 combinations associated with 32000.
D. There are 30 combinations associated with 31100.
E. There are 30 combinations associated with 22100.
F. There are 20 combinations associated with 21110.
G. There is one combinations associated with 11111.
The number of 1's associated with A is 0, with B 20, with C 0, with D 60, with E 30, with F 60 and with G 5. 0 + 20 + 0 + 60 + 30 + 60 + 5 = 175.
(End)
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> n*Binomial(2*n-3, n-1)); # G. C. Greubel, Jul 27 2019
  • Magma
    [n*Binomial(2*n-3, n-1): n in [1..30]]; // Vincenzo Librandi, Jul 13 2019
    
  • Maple
    A097070 := n -> ifelse(n=1, 1, 2^(n-2)*JacobiP(n-1, -1/2, -n+2, 3)):
    seq(simplify(A097070(n)), n = 1..28);  # Peter Luschny, Jan 22 2025
  • Mathematica
    Table[n*Binomial[2n-3, n-1], {n, 30}] (* Robert G. Wilson v, Sep 17 2004 *)
  • PARI
    a(n) = n*binomial(2*n-3, n-1); \\ Joerg Arndt, Feb 17 2015
    
  • Sage
    [n*binomial(2*n-3, n-1) for n in (1..30)] # G. C. Greubel, Jul 27 2019
    

Formula

a(n) = n*binomial(2*n-3, n-1).
More generally, total number of k's (k>=0) in all ordered partitions of n into n parts, allowing zeros, is n*binomial(2*n-k-2, n-2) if n >= k, 0 otherwise.
Total number of 0's is given by A005430.
From Vladeta Jovovic, Sep 17 2004: (Start)
a(n) = Sum_{k=0..n} k*binomial(n, k)*binomial(n-2, k-2).
G.f.: x*(1 -2*x +(1-4*x)^(3/2))/(2*(1-4*x)^(3/2)).
E.g.f.: (x/2)*(exp(2*x)*BesselI(0, 2*x)+1). (End)
a(n) = A014107(n)*A000108(n-2). - Philippe Deléham, Apr 12 2007
a(n) = n*A088218(n-1) for n > 0. - Werner Schulte, Jan 22 2017
From Bruce J. Nicholson, Jul 11 2019: (Start)
a(n) = A002740(n) + A097613(n).
a(n) = A110609(n-1) - A002457(n-2) + A097613(n).
a(n) = A005430(n-1) - A000917(n-3) for n > 1.
a(n) = A002457(n-1) - A037965(n) - A000917(n-3) for n > 1.
a(n) = A037965(n)/2.
a(n) = A001700(n-2)*n.
a(n) = A001791(n-2)*n + A000984(n-2)*n for n > 1. (End)
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=1} 1/a(n) = 4*Pi/(3*sqrt(3)) - Pi^2/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(phi)/sqrt(5) - 4*log(phi)^2, where phi is the golden ratio (A001622). (End)
a(n) = 2^(n-2)*JacobiP(n-1, -1/2, -n+2, 3) for n > 1. - Peter Luschny, Jan 22 2025

Extensions

Formula, more terms and comments from Vladeta Jovovic, Sep 15 2004

A061928 Array T(n,m) = 1/beta(n+1,m+1) read by antidiagonals.

Original entry on oeis.org

6, 12, 12, 20, 30, 20, 30, 60, 60, 30, 42, 105, 140, 105, 42, 56, 168, 280, 280, 168, 56, 72, 252, 504, 630, 504, 252, 72, 90, 360, 840, 1260, 1260, 840, 360, 90, 110, 495, 1320, 2310, 2772, 2310, 1320, 495, 110, 132, 660, 1980, 3960, 5544, 5544, 3960
Offset: 1

Views

Author

Frank Ellermann, May 22 2001

Keywords

Comments

beta(n+1,m+1) = Integral_{x=0..1} x^n * (1-x)^m dx for real n, m.

Examples

			Antidiagonals:
   6,
  12, 12,
  20, 30, 20,
  30, 60, 60, 30,
  ...
Array:
   6  12  20   30   42
  12  30  60  105  168
  20  60 140  280  504
  30 105 280  630 1260
  42 168 504 1260 2772
		

References

  • G. Boole, A Treatise On The Calculus of Finite Differences, Dover, 1960, p. 26.

Crossrefs

Rows: 1/b(n, 2): A002378, 1/b(n, 3): A027480, 1/b(n, 4): A033488. Diagonals: 1/b(n, n): A002457, 1/b(n, n+1) A005430, 1/b(n, n+2): A000917.
T(i, j)=A003506(i+1, j+1).

Programs

  • Mathematica
    t[n_, m_] := 1/Beta[n+1, m+1]; Take[ Flatten[ Table[ t[n+1-m, m], {n, 1, 10}, {m, 1, n}]], 52] (* Jean-François Alcover, Oct 11 2011 *)
  • PARI
    A(i,j)=if(i<1||j<1,0,1/subst(intformal(x^i*(1-x)^j),x,1)) /* Michael Somos, Feb 05 2004 */
    
  • PARI
    A(i,j)=if(i<1||j<1,0,1/sum(k=0,i,(-1)^k*binomial(i,k)/(j+1+k))) /* Michael Somos, Feb 05 2004 */
    
  • Python
    from sympy import factorial as f
    def T(n, m): return f(n + m + 1)/(f(n)*f(m))
    for n in range(1, 11): print([T(m, n - m + 1) for m in range(1, n + 1)]) # Indranil Ghosh, Apr 29 2017

Formula

beta(n+1, m+1) = gamma(n+1)*gamma(m+1)/gamma(n+m+2) = n!*m!/(n+m+1)!.

A386789 Triangle read by rows: T(n, k) = binomial(n - 1, k - 1)*binomial(n + k, k).

Original entry on oeis.org

1, 0, 2, 0, 3, 6, 0, 4, 20, 20, 0, 5, 45, 105, 70, 0, 6, 84, 336, 504, 252, 0, 7, 140, 840, 2100, 2310, 924, 0, 8, 216, 1800, 6600, 11880, 10296, 3432, 0, 9, 315, 3465, 17325, 45045, 63063, 45045, 12870, 0, 10, 440, 6160, 40040, 140140, 280280, 320320, 194480, 48620
Offset: 0

Views

Author

Peter Luschny, Aug 06 2025

Keywords

Examples

			Triangle begins:
  [0] 1;
  [1] 0, 2;
  [2] 0, 3,   6;
  [3] 0, 4,  20,   20;
  [4] 0, 5,  45,  105,   70;
  [5] 0, 6,  84,  336,  504,   252;
  [6] 0, 7, 140,  840, 2100,  2310,   924;
  [7] 0, 8, 216, 1800, 6600, 11880, 10296, 3432;
.
Seen as an array A(n, k) = binomial(n + k - 1, n)*binomial(n + 2*k, k):
  [0] 1, 2,   6,   20,    70,    252,     924, ... [A000984]
  [1] 0, 3,  20,  105,   504,   2310,   10296, ... [A000917]
  [2] 0, 4,  45,  336,  2100,  11880,   63063, ...
  [3] 0, 5,  84,  840,  6600,  45045,  280280, ...
  [4] 0, 6, 140, 1800, 17325, 140140, 1009008, ...
  [5] 0, 7, 216, 3465, 40040, 378378, 3118752, ...
  [6] 0, 8, 315, 6160, 84084, 917280, 8576568, ...
		

Crossrefs

Cf. A176479 (row sums), A000984 (main diagonal), A181983 (alternating row sums), A386876 (central terms).

Programs

  • Maple
    T := (n, k) -> binomial(n - 1, k - 1)*binomial(n + k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    A386789[n_, k_] := Binomial[n - 1, k - 1]*Binomial[n + k, k];
    Table[A386789[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Aug 06 2025 *)

Formula

A357367(n, k) = n!*T(n, k).

A118963 Triangle read by rows: T(n,k) is the number of Grand Dyck paths of semilength n that have k double rises (n >= 1, k >= 0).

Original entry on oeis.org

2, 3, 3, 4, 12, 4, 5, 30, 30, 5, 6, 60, 120, 60, 6, 7, 105, 350, 350, 105, 7, 8, 168, 840, 1400, 840, 168, 8, 9, 252, 1764, 4410, 4410, 1764, 252, 9, 10, 360, 3360, 11760, 17640, 11760, 3360, 360, 10, 11, 495, 5940, 27720, 58212, 58212, 27720, 5940, 495, 11, 12
Offset: 1

Views

Author

Emeric Deutsch, May 07 2006

Keywords

Comments

A Grand Dyck path of semilength n is a path in the half-plane x >= 0, starting at (0,0), ending at (2n,0) and consisting of steps u = (1,1) and d = (1,-1); a double rise in a Grand Dyck path is an occurrence of uu in the path.
For double rises only above the x-axis see A118964.
This is the triangle of Narayana with row n multiplied by n + 1. - Peter Luschny, May 02 2022

Examples

			T(3,2)=4 because we have uuuddd, duuudd, dduuud and ddduuu.
Triangle begins:
  2;
  3,    3;
  4,   12,    4;
  5,   30,   30,    5;
  6,   60,  120,   60,    6;
  7,  105,  350,  350,  105,    7;
  8,  168,  840, 1400,  840,  168,    8;
  9,  252, 1764, 4410, 4410, 1764,  252,    9;
		

Crossrefs

Programs

  • Maple
    r:=(1-z-t*z-sqrt(z^2*t^2-2*z^2*t-2*z*t+z^2-2*z+1))/2/t/z: G:=(1+r)^2/(1-t*r^2)-1: Gser:=simplify(series(G,z=0,15)): for n from 1 to 11 do P[n]:=sort(coeff(Gser,z,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,j),j=0..n-1) od; # yields sequence in triangular form
    for n from 0 to 10 do seq(binomial(n,i)*binomial(n+2,n+1-i), i=0..n ); od; # Zerinvary Lajos, Nov 03 2006

Formula

T(n,1) = n(n^2 - 1)/2 (A027480).
T(n,2) = (n+1)n(n-1)^2*(n-2)/12 (A027789).
T(n,k) = ((n+1)/n)*binomial(n,k)*binomial(n,k+1).
Sum_{k>=0} k*T(n,k) = (2n-1)!/(n!(n-2)!) (A000917).
G.f.: G(t,z) = (1+r)^2/(1 - tr^2) - 1, where r = r(t,z) is the Narayana function, defined by (1+r)(1+tr)z = r, r(t,0) = 0. More generally, the g.f. H = H(t,s,u,z), where t,s and u mark double rises above, below and on the x-axis, respectively, is H = (1 + r(s,z))/(1 - z(1 + tr(t,z))(1 + ur(s,z))).
Row n is given by seq(binomial(n, k)*binomial(n+2, n+1-k), k=0..n). - Zerinvary Lajos, Nov 03 2006
T(n,k)/(n+1) = A001263(n,k). - Peter Luschny, May 02 2022

A237884 a(n) = (n!*m)/(m!*(m+1)!) where m = floor(n/2).

Original entry on oeis.org

0, 0, 1, 3, 4, 20, 15, 105, 56, 504, 210, 2310, 792, 10296, 3003, 45045, 11440, 194480, 43758, 831402, 167960, 3527160, 646646, 14872858, 2496144, 62403600, 9657700, 260757900, 37442160, 1085822640, 145422675, 4508102925, 565722720, 18668849760, 2203961430
Offset: 0

Views

Author

Peter Luschny, Feb 14 2014

Keywords

Programs

  • Maple
    A237884 := proc(n) m := iquo(n,2); (n!*m)/(m!*(m+1)!) end;
    seq(A237884(n), n = 0..34);
  • Mathematica
    CoefficientList[Series[-((-1 + Sqrt[1 - 4 x^2] -x (-1 + Sqrt[1 - 4 x^2] +
    2 x (-3 + 2 Sqrt[1 - 4 x^2] +x (3 + 4 x - 2 Sqrt[1 - 4 x^2]))))/
    (2 x^2 (1 - 4 x^2)^(3/2))), {x, 0, 30}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
    Table[(n! #)/(#! (# + 1)!) &@ Floor[n/2], {n, 0, 34}] (* Michael De Vlieger, Aug 15 2016 *)
  • Sage
    def A237884():
        r, s, n = 1, 0, 0
        while True:
            yield s
            n += 1
            r *= 4/n if is_even(n) else n
            s = r * (n//2)/(n//2+1)
    a = A237884(); [next(a) for i in range(35)]

Formula

a(2*n) = A001791(n).
a(2*n+1) = A000917(n-1).
a(n) = n^(n mod 2)*binomial(2*floor(n/2), floor(n/2)-1).
a(n) = A162246(n, n+2) = n!/((n-ceiling((n+2)/2))!*floor((n+2)/2)!) if n > 1, otherwise 0.
a(n) = A056040(n)*floor(n/2)/(floor(n/2)+1).
a(n) + A056040(n) = A057977(n).
G.f.: -((p - 1 - x*(p - 1 + 2*x*(2*p - 3 + x*(3 + 4*x - 2*p))))/(2*x^2*p^3)), where p=sqrt(1-4*x^2). - Benedict W. J. Irwin, Aug 15 2016

A349147 Triangle T(n,m) read by rows: the sum of runs of all sequences arranging n objects of one type and m objects of another type.

Original entry on oeis.org

1, 1, 4, 1, 7, 18, 1, 10, 34, 80, 1, 13, 55, 155, 350, 1, 16, 81, 266, 686, 1512, 1, 19, 112, 420, 1218, 2982, 6468, 1, 22, 148, 624, 2010, 5412, 12804, 27456, 1, 25, 189, 885, 3135, 9207, 23595, 54483, 115830, 1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200, 1, 31
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2021

Keywords

Examples

			The triangle starts
  1,
  1,  4,
  1,  7,  18,
  1, 10,  34,   80,
  1, 13,  55,  155,  350,
  1, 16,  81,  266,  686,  1512,
  1, 19, 112,  420, 1218,  2982,  6468,
  1, 22, 148,  624, 2010,  5412, 12804,  27456,
  1, 25, 189,  885, 3135,  9207, 23595,  54483, 115830,
  1, 28, 235, 1210, 4675, 14872, 41041, 101530, 230230, 486200,
  1, 31, 286, 1606, 6721, 23023, 68068, 179608, 432718, 967538, 2032316
For n=m=1 the sequences are ab (2 runs) and ba (2 runs), so T(1,1)=2+2=4.
For n=1, m=2 the sequences are aab (2 runs), aba (3 runs), baa (2 runs), so T(1,2)=2+3+2=7.
For n=m=2 the sequences are aabb (2 runs), abab (4 runs), abba (3 runs), baab (3 runs), baba (4 runs), bbaa (2 runs), so T(2,2) = 2+4+3+3+4+2=18.
		

Crossrefs

Cf. A016777 (row/col 1), A000566 (row/col 2), A007584 (row/col 3), A051798 (row/col 4).
Diagonal gives A037965(n+1).

Formula

T(n,m) = T(m,n).
Sum_{m=0..n} T(n,m) = A000917(n-1) + A000984(n) = 1, 5, 26, 125, 574, ... - R. J. Mathar, Nov 09 2021
T(n,m) = binomial(n+m,n)*(2*n*m+n+m)/(n+m) for n+m >= 1.
Showing 1-9 of 9 results.