cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000920 Differences of 0: 6!*Stirling2(n,6).

Original entry on oeis.org

0, 0, 0, 0, 0, 720, 15120, 191520, 1905120, 16435440, 129230640, 953029440, 6711344640, 45674188560, 302899156560, 1969147121760, 12604139926560, 79694820748080, 499018753280880, 3100376804676480, 19141689213218880, 117579844328562000
Offset: 1

Views

Author

Keywords

Comments

Number of surjections from an n-element set onto a six-element set, with n >= 6. - Mohamed Bouhamida, Dec 15 2007
Number of rows of n colors using exactly six colors. For n=6, the 720 rows are the 720 permutations of ABCDEF. - Robert A. Russell, Sep 25 2018

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. F. Steffensen, Interpolation, 2nd ed., Chelsea, NY, 1950, see p. 54.
  • A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.

Crossrefs

Programs

  • Magma
    [6^n-Binomial(6,5)*5^n+Binomial(6,4)*4^n-Binomial(6,3)*3^n+Binomial(6,2)*2^n-Binomial(6,1): n in [1..30]]; // Vincenzo Librandi, May 18 2015
    
  • Maple
    720/(-1+z)/(6*z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1);
  • Mathematica
    CoefficientList[Series[(720*x^5)/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)),{x,0,30}],x] (* Vincenzo Librandi, Apr 11 2012 *)
    k=6; Table[k!StirlingS2[n,k],{n,1,30}] (* Robert A. Russell, Sep 25 2018 *)
  • PARI
    a(n) = 6!*stirling(n, 6, 2); \\ Altug Alkan, Sep 25 2018

Formula

a(n) = Sum((-1)^i*binomial(6, i)*(6-i)^n, i = 0 .. 5).
a(n) = 6^n-C(6,5)*5^n+C(6,4)*4^n-C(6,3)*3^n+C(6,2)*2^n-C(6,1) with n>=6. - Mohamed Bouhamida, Dec 15 2007
G.f.: 720*x^6/((x-1)*(6*x-1)*(4*x-1)*(3*x-1)*(2*x-1)*(5*x-1)). [Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009; checked and corrected by R. J. Mathar, Sep 16 2009]
a(n) = 720*A000770(n). - R. J. Mathar, Apr 30 2015
E.g.f.: (exp(x) - 1)^6. - Geoffrey Critzer, May 17 2015