cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000928 Irregular primes: primes p such that at least one of the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) is divisible by p.

Original entry on oeis.org

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619, 631, 647, 653, 659, 673, 677, 683, 691, 727, 751, 757, 761, 773, 797, 809, 811, 821, 827, 839, 877, 881, 887, 929, 953, 971, 1061
Offset: 1

Views

Author

Keywords

Comments

A prime is irregular if and only if the integer Sum_{j=1..p-1} cot^(r)(j*Pi/p)*cot(j*Pi/p) is divisible by p for some even r <= p-5. (See G. Almkvist 1994.) - Peter Luschny, Jun 24 2012
Jensen proved in 1915 that there are infinitely many irregular primes. It is not known if there are infinitely many regular primes.
"The pioneering mathematician Kummer, over the period 1847-1850, used his profound theory of cyclotomic fields to establish a certain class of primes called 'regular' primes. ... It is known that there exist an infinity of irregular primes; in fact it is a plausible conjecture that only an asymptotic fraction 1/Sqrt(e) ~ 0.6 of all primes are regular." [Ribenboim]
Johnson (1975) mentions "consecutive irregular prime pairs", meaning an irregular prime p such that, for some integer k <= 2*p-3, p divides the numerators of the Bernoulli numbers B_{2k} and B_{2k+2}. He gives the examples p = 491 (with k=168) and p = 587. No other examples are known. - N. J. A. Sloane, May 01 2021, following a suggestion from Felix Fröhlich.
An odd prime p is irregular if and only if p divides the class number of Q(zeta_p), where zeta_n = exp(2*Pi*i/n); that is, for k >= 2, p = prime(k) is irregular if and only if p divides A055513(k). For example, 37 is irregular since Q(zeta_37) has class number A055513(12) = 37. - Jianing Song, Sep 13 2022

References

  • G. Almkvist, Wilf's conjecture and a generalization, In: The Rademacher legacy to mathematics, 211-233, Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 377, 425-430 (but there are errors in the tables).
  • R. E. Crandall, Mathematica for the Sciences, Addison-Wesley Publishing Co., Redwood City, CA, 1991, pp. 248-255.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 59, p. 21, Ellipses, Paris 2008.
  • H. M. Edwards, Fermat's Last Theorem, Springer, 1977, see p. 244.
  • J. Neukirch, Algebraic Number Theory, Springer, 1999, p. 38.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 257.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 225.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, p. 350.

Crossrefs

Cf. A091887 (irregularity index of the n-th irregular prime).

Programs

  • Maple
    A000928_list := proc(len)
    local ab, m, F, p, maxp; F := {};
    for m from 2 by 2 to len do
       p := nextprime(m+1);
       ab := abs(bernoulli(m));
       maxp := min(ab, len);
       while p <= maxp do
          if ab mod p = 0
          then F := F union {p} fi;
          p := nextprime(p);
       od;
    od;
    sort(convert(F,list)) end:
    A000928_list(1000); # Peter Luschny, Apr 25 2011
  • Mathematica
    fQ[p_] := Block[{k = 1}, While[ 2k <= p-3 && Mod[ Numerator@ BernoulliB[ 2k], p] != 0, k++]; 2k <= p-3]; Select[ Prime@ Range@ 137, fQ] (* Robert G. Wilson v, Jun 25 2012 *)
    Select[Prime[Range[200]],MemberQ[Mod[Numerator[BernoulliB[2*Range[(#-1)/ 2]]], #],0]&] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    a(n)=local(p);if(n<1,0,p=a(n-1)+(n==1);while(p=nextprime(p+2), forstep(i=2,p-3,2,if(numerator(bernfrac(i))%p==0,break(2))));p) /* Michael Somos, Feb 04 2004 */
    
  • Python
    from sympy import bernoulli, primerange
    def ok(n):
        k = 1
        while 2*k <= n - 3 and bernoulli(2*k).numerator % n:
            k+=1
        return 2*k <= n - 3
    print([n for n in primerange(2, 1101) if ok(n)]) # Indranil Ghosh, Jun 27 2017, after Robert G. Wilson v