A000945 Euclid-Mullin sequence: a(1) = 2, a(n+1) is smallest prime factor of 1 + Product_{k=1..n} a(k).
2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, 23003, 30693651606209, 37, 1741, 1313797957, 887, 71, 7127, 109, 23, 97, 159227, 643679794963466223081509857, 103, 1079990819, 9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 457, 9649, 61, 4357
Offset: 1
Examples
a(5) is equal to 13 because 2*3*7*43 + 1 = 1807 = 13 * 139.
References
- Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 6.
- Richard Guy and Richard Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 5.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Samuel S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, Vol. 8 (1993), pp. 23-32.
Links
- Ryan Propper, Table of n, a(n) for n = 1..51 (first 47 terms from T. D. Noe)
- Andrew R. Booker, On Mullin's second sequence of primes, Integers, Vol. 12, No. 6 (2012), pp. 1167-1177; arXiv preprint, arXiv:1107.3318 [math.NT], 2011-2013.
- Andrew R. Booker, A variant of the Euclid-Mullin sequence containing every prime, arXiv preprint arXiv:1605.08929 [math.NT], 2016.
- Andrew R. Booker and Sean A. Irvine, The Euclid-Mullin graph, Journal of Number Theory, Vol. 165 (2016), pp. 30-57; arXiv preprint, arXiv:1508.03039 [math.NT], 2015-2016.
- Cristian Cobeli and Alexandru Zaharescu, Promenade around Pascal Triangle-Number Motives, Bull. Math. Soc. Sci. Math. Roumanie, Vol. 56(104), No. 1 (2013), pp. 73-98.
- Keith Conrad, The infinitude of the primes, University of Connecticut, 2020.
- C. D. Cox and A. J. van der Poorten, On a sequence of prime numbers, Journal of the Australian Mathematical Society, Vol. 8 (1968), pp. 571-574.
- FactorDB, Status of EM51.
- Richard Guy and Richard Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.
- Lucas Hoogendijk, Prime Generators, Bachelor Thesis, Utrecht University (Netherlands, 2020).
- Robert R. Korfhage, On a sequence of prime numbers, Bull Amer. Math. Soc., Vol. 70 (1964), pp. 341, 342, 747. [Annotated scanned copy]
- Evelyn Lamb, A Curious Sequence of Prime Numbers, Scientific American blog (2019).
- Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, Vol. 97, No. 540 (2013), pp. 495-498.
- Mersenne Forum, Factoring 43rd Term of Euclid-Mullin sequence.
- Mersenne Forum, Factoring EM47.
- Romeo Meštrović, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012.
- Albert A. Mullin, Research Problem 8: Recursive function theory, Bull. Amer. Math. Soc., Vol. 69, No. 6 (1963), p. 737.
- Thorkil Naur, Letter to N. J. A. Sloane, Aug 27 1991, together with copies of "Mullin's sequence of primes is not monotonic" (1984) and "New integer factorizations" (1983) [Annotated scanned copies]
- OEIS wiki, OEIS sequences needing factors
- Paul Pollack and Enrique Treviño, The Primes that Euclid Forgot, Amer. Math. Monthly, Vol. 121, No. 5 (2014), pp. 433-437. MR3193727; alternative link.
- Daphne Stouthart, Euclid and the infinite number of missing primes, Bachelor Thesis, Utrecht Univ (Netherlands, 2024). See p. 1.
- Samuel S. Wagstaff, Jr., Emails to N. J. A. Sloane, May 30 1991.
- Samuel S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, Vol. 8 (1993), pp. 23-32. (Annotated scanned copy)
Programs
-
Maple
a :=n-> if n = 1 then 2 else numtheory:-divisors(mul(a(i),i = 1 .. n-1)+1)[2] fi: seq(a(n), n=1..15); # Robert FERREOL, Sep 25 2019
-
Mathematica
f[1]=2; f[n_] := f[n] = FactorInteger[Product[f[i], {i, 1, n - 1}] + 1][[1, 1]]; Table[f[n], {n, 1, 46}] nxt[{p_,a_}]:=With[{c=FactorInteger[p+1][[1,1]]},{p*c,c}]; Rest[NestList[nxt,{1,2},20][[;;,2]]] (* Harvey P. Dale, Feb 02 2025 *)
-
PARI
print1(k=2);for(n=2,20,print1(", ",p=factor(k+1)[1,1]);k*=p) \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
P=[];until(,print(P=concat(P,factor(vecprod(P)+1)[1,1]))) \\ Jeppe Stig Nielsen, Apr 01 2024
Comments