cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000962 The convergent sequence A_n for the ternary continued fraction (3,1;2,2) of period 2.

Original entry on oeis.org

1, 0, 0, 1, 2, 5, 15, 32, 99, 210, 650, 1379, 4268, 9055, 28025, 59458, 184021, 390420, 1208340, 2563621, 7934342, 16833545, 52099395, 110534372, 342101079, 725803590, 2246343710, 4765855559, 14750202128, 31294112515, 96854484845, 205487024518, 635977131241
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A000962:=(z+1)*(2*z**4-7*z**3+6*z**2+z-1)/(-1+7*z**2-3*z**4+z**6); # conjectured by Simon Plouffe in his 1992 dissertation
    a:= n-> (Matrix([[5,2,1,0,0,1]]). Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [0, 7, 0, -3, 0, 1][i] else 0 fi)^n)[1,6]: seq(a(n), n=0..35); # Alois P. Heinz, Aug 26 2008
  • Mathematica
    CoefficientList[Series[(-2x^5+5x^4+x^3-7x^2+1)/(-x^6+3x^4-7x^2+1),{x,0,30}],x] (* Vincenzo Librandi, Apr 10 2012 *)
    LinearRecurrence[{0,7,0,-3,0,1},{1,0,0,1,2,5},40] (* Harvey P. Dale, Jun 28 2020 *)
  • PARI
    Vec((-2*x^5+5*x^4+x^3-7*x^2+1)/(-x^6+3*x^4-7*x^2+1)+O(x^99)) \\ Charles R Greathouse IV, Apr 10 2012

Formula

G.f.: (-2x^5 + 5x^4 + x^3 - 7x^2 + 1)/(-x^6 + 3x^4 - 7x^2 + 1).