A000971 Fermat coefficients.
1, 9, 42, 132, 334, 728, 1428, 2584, 4389, 7084, 10963, 16380, 23751, 33563, 46376, 62832, 83657, 109668, 141778, 181001, 228459, 285384, 353127, 433160, 527085, 636636, 763686, 910252, 1078500, 1270752, 1489488, 1737355, 2017169, 2331924
Offset: 6
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 6..1000
- R. P. Loh, A. G. Shannon, A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
- P. A. Piza, Fermat coefficients, Math. Mag., 27 (1954), 141-146.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,19,-9,-9,18,-9,-9,19,-15,6,-1).
Crossrefs
Cf. A258708.
Programs
-
Haskell
a000971 n = a258708 n (n - 6) -- Reinhard Zumkeller, Jun 23 2015
-
Maple
(1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(-1+z)^6;
-
Mathematica
CoefficientList[Series[(1+3*x+3*x^7+x^8+3*x^2-4*x^3+10*x^4-4*x^5+3*x^6)/(x^6+x^3+1)/(-1+x)^6,{x,0,40}],x] (* Vincenzo Librandi, Mar 28 2012 *)
-
PARI
Vec((1+3*z+3*z^7+z^8+3*z^2-4*z^3+10*z^4-4*z^5+3*z^6)/(z^6+z^3+1)/(z-1)^6+O(x^99)) \\ Charles R Greathouse IV, Mar 28 2012
Formula
G.f.: (1 + 3x + 3x^7 + x^8 + 3x^2 - 4x^3 + 10x^4 - 4x^5 + 3x^6)/(x^6 + x^3 + 1)/(-1+x)^6 (see MAPLE line).
a(n) = A258708(n,n-6). - Reinhard Zumkeller, Jun 23 2015
Extensions
More terms from Sean A. Irvine, Sep 25 2011