cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000977 Numbers that are divisible by at least three different primes.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 90, 102, 105, 110, 114, 120, 126, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 198, 204, 210, 220, 222, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285
Offset: 1

Views

Author

Keywords

Comments

a(n+1)-a(n) seems bounded and sequence appears to give n such that the number of integers of the form nk/(n+k) k>=1 is not equal to Sum_{ d | n} omega(d) (i.e., n such that A062799(n) is not equal to A063647(n)). - Benoit Cloitre, Aug 27 2002
The first differences are bounded: clearly a(n+1) - a(n) <= 30. - Charles R Greathouse IV, Dec 19 2011

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 844.

Crossrefs

Complement of A070915.

Programs

  • Haskell
    a000977 n = a000977_list !! (n-1)
    a000977_list = filter ((> 2) . a001221) [1..]
    -- Reinhard Zumkeller, May 03 2013
  • Maple
    A000977 := proc(n)
    if (nops(numtheory[factorset](n)) >= 3) then
       RETURN(n)
    fi: end:  seq(A000977(n), n=1..500); # Jani Melik, Feb 24 2011
  • Mathematica
    DeleteCases[Table[If[Count[PrimeQ[Divisors[i]], True] >= 3, i, 0], {i, 1, 274}], 0]
    Select[Range[300], PrimeNu[#] >= 3 &] (* Paolo Xausa, Mar 28 2024 *)
  • PARI
    is(n)=omega(n)>2 \\ Charles R Greathouse IV, Dec 19 2011
    

Formula

a(n) = n + O(n log log n / log n). - Charles R Greathouse IV, Dec 19 2011 A001221(a(n)) > 2. - Reinhard Zumkeller, May 03 2013
A033992 UNION A033993 UNION A051270 UNION A074969 UNION A176655 UNION ... - R. J. Mathar, Dec 05 2016

Extensions

More terms from Vit Planocka (planocka(AT)mistral.cz), Sep 17 2002