cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A000979 Wagstaff primes: primes of form (2^p + 1)/3.

Original entry on oeis.org

3, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243, 62357403192785191176690552862561408838653121833643
Offset: 1

Views

Author

Keywords

Comments

Also, the primes with prime indices in the Jacobsthal sequence A001045.
Indices n such that (2^n + 1)/3 is prime are listed in A000978. - Alexander Adamchuk, Oct 03 2006
Primes in A126614. - Omar E. Pol, Nov 05 2013

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010051; subsequence of A007583.

Programs

  • Haskell
    a000979 n = a000979_list !! (n-1)
    a000979_list = filter ((== 1) . a010051) a007583_list
    -- Reinhard Zumkeller, Mar 24 2013
    
  • Mathematica
    Select[ Array[(2^# + 1)/3 &, 190], PrimeQ] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2010 *)
  • PARI
    forprime(p=2,10000,if(ispseudoprime(2^p\/3),print1(2^p\/3,","))) \\ Edward Jiang, Sep 05 2014
  • Python
    from gmpy2 import divexact
    from sympy import prime, isprime
    A000979 = [p for p in (divexact(2**prime(n)+1,3) for n in range(2,10**2)) if isprime(p)] # Chai Wah Wu, Sep 04 2014