A000980 Number of ways of writing 0 as Sum_{k=-n..n} e(k)*k, where e(k) is 0 or 1.
2, 4, 8, 20, 52, 152, 472, 1520, 5044, 17112, 59008, 206260, 729096, 2601640, 9358944, 33904324, 123580884, 452902072, 1667837680, 6168510256, 22903260088, 85338450344, 318995297200, 1195901750512, 4495448217544, 16940411201280, 63983233268592
Offset: 0
Examples
From _Gus Wiseman_, Apr 23 2023: (Start) The a(0) = 2 through a(2) = 8 subsets of {-n..n} with sum 0 are: {} {} {} {0} {0} {0} {-1,1} {-1,1} {-1,0,1} {-2,2} {-1,0,1} {-2,0,2} {-2,-1,1,2} {-2,-1,0,1,2} (End)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 294.
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see pp. 715-717.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ray Chandler, Table of n, a(n) for n = 0..1668 (terms < 10^1000; terms 0..200 from T. D. Noe, terms 201..400 from Alois P. Heinz)
- Eunice Y. S. Chan and R. M. Corless, Narayana, Mandelbrot, and A New Kind of Companion Matrix, arXiv preprint arXiv:1606.09132 [math.CO], 2016.
- R. C. Entringer, Representation of m as Sum_{k=-n..n} epsilon_k k, Canad. Math. Bull., 11 (1968), 289-293.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- J. H. van Lint, Representations of 0 as Sum_{k = -N..N} epsilon_k*k, Proc. Amer. Math. Soc., 18 (1967), 182-184.
Crossrefs
Programs
-
Haskell
a000980 n = length $ filter ((== 0) . sum) $ subsequences [-n..n]
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(i=0, 1, 2*b(n, i-1)+b(n+i, i-1)+b(abs(n-i), i-1))) end: a:=n-> 2*b(0, n): seq(a(n), n=0..40); # Alois P. Heinz, Mar 10 2014
-
Mathematica
a[n_] := SeriesCoefficient[ Product[1+x^k, {k, -n, n}], {x, 0, 0}]; a[0] = 2; Table[a[n], {n, 0, 24}](* Jean-François Alcover, Nov 28 2011 *) nmax = 26; d = {2}; a1 = {}; Do[ i = Ceiling[Length[d]/2]; AppendTo[a1, If[i > Length[d], 0, d[[i]]]]; d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n] + 2 PadLeft[PadRight[d, Length[d] + n], Length[d] + 2 n]; , {n, nmax}]; a1 (* Ray Chandler, Mar 15 2014 *) Table[Length[Select[Subsets[Range[-n,n]],Total[#]==0&]],{n,0,5}] (* Gus Wiseman, Apr 23 2023 *)
-
PARI
a(n)=polcoeff(prod(k=-n,n,1+x^k),0)
Formula
Constant term of Product_{k=-n..n} (1+x^k).
a(n) = Sum_i A067059(2n+1-i, i) = 2+2*Sum_j A047997(n, j); i.e., sum of alternate antidiagonals of A067059 and two more than twice row sums of A047997. - Henry Bottomley, Aug 11 2002
Coefficient of x^(n*(n+1)/2) in 2*Product_{k=1..n} (1+x^k)^2. - Sean A. Irvine, Oct 03 2011
From Gus Wiseman, Apr 23 2023: (Start)
a(n) = 2*A047653(n).
a(n) = A070925(2n+1) + 1.
a(n) = 2*A133406(2n+1).
a(n) = 2*(A212352(n) + 1).
a(n) = A222955(2n+1).
a(n) = 2*(A362046(2n) + 1).
(End)
Extensions
More terms from Michael Somos, Jun 10 2000
Comments