A001018 Powers of 8: a(n) = 8^n.
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, 134217728, 1073741824, 8589934592, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474976710656, 2251799813685248, 18014398509481984, 144115188075855872, 1152921504606846976, 9223372036854775808, 73786976294838206464, 590295810358705651712, 4722366482869645213696
Offset: 0
Examples
For n=1, the 1st order Sierpinski carpet graph is an 8-cycle.
References
- K. H. Rosen et al., eds., Handbook of Discrete and Combinatorial Mathematics, CRC Press, 2017; p. 15.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 273
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Tanya Khovanova, Recursive Sequences
- Caroline Nunn, A Proof of a Generalization of Niven's Theorem Using Algebraic Number Theory, Rose-Hulman Undergraduate Mathematics Journal: Vol. 22, Iss. 2, Article 3 (2021). See table at p. 9.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- Eric Weisstein's World of Mathematics, SierpiĆski Carpet
- Index entries for linear recurrences with constant coefficients, signature (8).
Crossrefs
Cf. A000079 (powers of 2), A000244 (powers of 3), A000302 (powers of 4), A000351 (powers of 5), A000400 (powers of 6), A000420 (powers of 7), A001019 (powers of 9), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48), A087752 (powers of 49), A165800 (powers of 50), A159991 (powers of 60).
Cf. A032766 (floor(3*n/2)).
Cf. A271939 (number of edges in the n-Sierpinski carpet graph).
Programs
-
Haskell
a001018 = (8 ^) a001018_list = iterate (* 8) 1 -- Reinhard Zumkeller, Apr 29 2015
-
Magma
[8^n : n in [0..30]]; // Wesley Ivan Hurt, Sep 27 2016
-
Maple
seq(8^n, n=0..23); # Nathaniel Johnston, Jun 26 2011 A001018 := n -> 8^n; # M. F. Hasler, Apr 19 2015
-
Mathematica
Table[8^n, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011 *)
-
Maxima
makelist(8^n,n,0,20); /* Martin Ettl, Nov 12 2012 */
-
PARI
a(n)=8^n \\ Charles R Greathouse IV, May 10 2014
-
Python
print([8**n for n in range(25)]) # Michael S. Branicky, Dec 29 2021
Formula
a(n) = 8^n.
a(0) = 1; a(n) = 8*a(n-1) for n > 0.
G.f.: 1/(1-8*x).
E.g.f.: exp(8*x).
Sum_{n>=0} 1/a(n) = 8/7. - Gary W. Adamson, Aug 29 2008
From Stefano Spezia, Dec 28 2021: (Start)
a(n) = (-1)^n*(1 + sqrt(-3))^(3*n) (see Nunn, p. 9).
a(n) = (-1)^n*Sum_{k=0..floor(3*n/2)} (-3)^k*binomial(3*n, 2*k) (see Nunn, p. 9). (End)
Comments