cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001056 a(n) = a(n-1)*a(n-2) + 1, a(0) = 1, a(1) = 3.

Original entry on oeis.org

1, 3, 4, 13, 53, 690, 36571, 25233991, 922832284862, 23286741570717144243, 21489756930695820973683319349467, 500426416062641238759467086706254193219790764168482, 10754042042885415070816603338436200915110904821126871858491675028294447933424899095
Offset: 0

Views

Author

Keywords

References

  • Archimedeans Problems Drive, Eureka, 19 (1957), 13.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001622 (phi), A258112.

Programs

  • GAP
    a:=[1,3];; for n in [3..13] do a[n]:=a[n-1]*a[n-2]+1; od; a; # G. C. Greubel, Sep 19 2019
  • Haskell
    a001056 n = a001056_list !! n
    a001056_list = 1 : 3 : (map (+ 1 ) $
                   zipWith (*) a001056_list $ tail a001056_list)
    -- Reinhard Zumkeller, Aug 15 2012
    
  • Magma
    I:=[1,3]; [n le 2 select I[n] else Self(n-1)*Self(n-2) + 1: n in [1..13]]; // G. C. Greubel, Sep 19 2019
    
  • Maple
    a:= proc (n) option remember;
    if n=0 then 1
    elif n=1 then 3
    else a(n-1)*a(n-2) + 1
    end if
    end proc;
    seq(a(n), n = 0..13); # G. C. Greubel, Sep 19 2019
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==3,a[n]==a[n-1]*a[n-2]+1},a,{n,0,14}] (* Harvey P. Dale, Jul 17 2011 *)
    t = {1, 3}; Do[AppendTo[t, t[[-1]] * t[[-2]] + 1], {n, 2, 14}] (* T. D. Noe, Jun 25 2012 *)
  • PARI
    m=13; v=concat([1,3], vector(m-2)); for(n=3, m, v[n]=v[n-1]*v[n-2] +1 ); v \\ G. C. Greubel, Sep 19 2019
    
  • Sage
    def a(n):
        if (n==0): return 1
        elif (n==1): return 3
        else: return a(n-1)*a(n-2) + 1
    [a(n) for n in (0..13)] # G. C. Greubel, Sep 19 2019
    

Formula

a(n) ~ c^(phi^n), where c = A258112 = 1.7978784900091604813559508837..., phi = (1+sqrt(5))/2 = A001622. - Vaclav Kotesovec, Dec 17 2014