A001095 a(n) = n + n*(n-1)*(n-2)*(n-3)*(n-4).
0, 1, 2, 3, 4, 125, 726, 2527, 6728, 15129, 30250, 55451, 95052, 154453, 240254, 360375, 524176, 742577, 1028178, 1395379, 1860500, 2441901, 3160102, 4037903, 5100504, 6375625, 7893626, 9687627, 11793628, 14250629, 17100750, 20389351
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Equals A052787(n) + n.
Programs
-
GAP
List([0..35], n-> n + 120*Binomial(n,5)); # G. C. Greubel, Aug 26 2019
-
Magma
[n + n*(n-1)*(n-2)*(n-3)*(n-4): n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
-
Maple
seq(n + 5!*binomial(n,5), n=0..35); # G. C. Greubel, Aug 26 2019
-
Mathematica
Table[n+Times@@(n-Range[0,4]),{n,0,40}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,2,3,4,125},40] (* Harvey P. Dale, Oct 08 2017 *)
-
PARI
vector(35, n, (n-1) + 5!*binomial(n-1,5)) \\ G. C. Greubel, Aug 26 2019
-
Sage
[n + 120*binomial(n,5) for n in (0..35)] # G. C. Greubel, Aug 26 2019
Formula
G.f.: x*(1 - 4*x + 6*x^2 - 4*x^3 + 121*x^4)/(1-x)^6. - Colin Barker, Jun 25 2012
From G. C. Greubel, Aug 26 2019: (Start)
a(n) = n + 5!*binomial(n,5).
E.g.f.: x*(1 + x^4)*exp(x). (End)
Extensions
More terms from James Sellers, Sep 19 2000