A001097 Twin primes.
3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 59, 61, 71, 73, 101, 103, 107, 109, 137, 139, 149, 151, 179, 181, 191, 193, 197, 199, 227, 229, 239, 241, 269, 271, 281, 283, 311, 313, 347, 349, 419, 421, 431, 433, 461, 463, 521, 523, 569, 571, 599, 601, 617, 619, 641, 643
Offset: 1
References
- Tobias Dantzig, Number: The Language of Science, Macmillan, 1930.
- Paulo Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1996, pp. 259-265.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 132.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, p. 870.
- Viggo Brun, La série 1/5 + 1/7 + 1/11 + 1/13 + 1/17 + 1/19 + 1/29 + 1/31 + 1/41 + 1/43 + 1/59 + 1/61 + ... où les dénominateurs sont "nombres premiers jumeaux" est convergente ou finie, Bull Sci. Math. 43 (1919), 100-104 and 124-128.
- J. P. Delahaye, Premiers jumeaux: frères ennemis? [Twin primes: Enemy Brothers?], Pour la science, No. 260 (Juin 1999), 102-106.
- Harvey Dubner, Twin Prime Statistics, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.2.
- J. C. Evard, Twin primes and their applications. [Cached copy on the Wayback Machine]
- J. C. Evard, Twin primes and their applications. [Local cached copy]
- J. C. Evard, Twin primes and their applications. [Pdf file of cached copy]
- J. W. L. Glaisher, An enumeration of prime-pairs, Messenger of Mathematics, Vol. 8 (1878), pp. 28-33.
- Andrew Granville, Primes in intervals of bounded length, Joint Math Meeting, Current Events Bulletin, Baltimore, Friday, Jan 17 2014.
- G. H. Hardy and J. E. Littlewood, Some problems of 'Partitio numerorum'; III: On the expression of a number as a sum of primes, Acta Mathematica, Vol. 44, No. 1 (1923), pp. 1-70; alternative link.
- Nick MacKinnon, Problem 10844, Amer. Math. Monthly 109, (2002), p. 78.
- James Maynard, Small gaps between primes, Annals of Mathematics, Second series, Vol. 181, No. 1 (2015), pp. 383-413; arXiv preprint, arXiv:1311.4600 [math.NT], 2013-2019.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- D. H. J. Polymath, New equidistribution estimates of Zhang type, and bounded gaps between primes, arXiv:1402.0811 [math.NT], 2014.
- D. H. J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes, arXiv:1407.4897 [math.NT], 2014.
- Paul Stäckel, Die Darstellung der geraden Zahlen als Summen von zwei Primzahlen, Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse (in German), Abt. A, Bd. 10 (1916), pp. 1-47. See p. 22.
- Eric Weisstein's World of Mathematics, Twin Primes.
- Yitang Zhang, Bounded gaps between primes, Annals of Mathematics, Volume 179, Issue 3 (2014), Pages 1121-1174.
- Index entries for "core" sequences.
- Index entries for primes, gaps between.
Programs
-
Haskell
a001097 n = a001097_list !! (n-1) a001097_list = filter ((== 1) . a164292) [1..] -- Reinhard Zumkeller, Feb 03 2014, Nov 27 2011
-
Maple
A001097 := proc(n) option remember; if n = 1 then 3; else for a from procname(n-1)+1 do if isprime(a) and ( isprime(a-2) or isprime(a+2) ) then return a; end if; end do: end if; end proc: # R. J. Mathar, Feb 19 2015
-
Mathematica
Select[ Prime[ Range[120]], PrimeQ[ # - 2] || PrimeQ[ # + 2] &] (* Robert G. Wilson v, Jun 09 2005 *) Union[Flatten[Select[Partition[Prime[Range[200]],2,1],#[[2]]-#[[1]] == 2&]]] (* Harvey P. Dale, Aug 19 2015 *)
-
PARI
isA001097(n) = (isprime(n) && (isprime(n+2) || isprime(n-2))) \\ Michael B. Porter, Oct 29 2009
-
PARI
a(n)=if(n==1,return(3));my(p);forprime(q=3,default(primelimit), if(q-p==2 && (n-=2)<0, return(if(n==-1,q,p)));p=q) \\ Charles R Greathouse IV, Aug 22 2012
-
PARI
list(lim)=my(v=List([3]),p=5); forprime(q=7,lim, if(q-p==2, listput(v,p); listput(v,q)); p=q); if(p+2>lim && isprime(p+2), listput(v,p)); Vec(v) \\ Charles R Greathouse IV, Mar 17 2017
-
Python
from sympy import nextprime from itertools import islice def agen(): # generator of terms yield 3 p, q = 5, 7 while True: if q - p == 2: yield from [p, q] p, q = q, nextprime(q) print(list(islice(agen(), 58))) # Michael S. Branicky, Apr 30 2022
Comments