cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001103 Numbers k such that (k / product of digits of k) is 1 or a prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 15, 24, 36, 115, 175, 212, 624, 735, 816, 1115, 1184, 1197, 1416, 2144, 3171, 3276, 3915, 6624, 7119, 8832, 9612, 11133, 11212, 11331, 12128, 12216, 12768, 13131, 21184, 21728, 24912, 31113, 31488, 32172, 32616, 35175
Offset: 1

Views

Author

N. J. A. Sloane, Bill Moran (moran1(AT)llnl.gov)

Keywords

Comments

For terms > 10 the quotient (k / product of digits of k) is prime. - David A. Corneth, Mar 30 2021

Examples

			21728 is in the sequence as 21728/(2*1*7*2*8) = 97 which is prime. - _David A. Corneth_, Mar 30 2021
		

Crossrefs

Programs

  • Haskell
    a001103 n = a001103_list !! (n-1)
    a001103_list = filter f a052382_list where
       f x = m == 0 && (x' == 1 || a010051 x' == 1) where
           (x',m) = divMod x $ a007954 x
    -- Reinhard Zumkeller, Nov 02 2011
    
  • Magma
    IsA001103:=func< n | p ne 0 and n mod p eq 0 and (q eq 1 or IsPrime(q)) where q is (p eq 0 select 0 else n div p) where p is &*Intseq(n) >; [ n: n in [1..40000] | IsA001103(n) ]; // Klaus Brockhaus, Jan 24 2011
    
  • Mathematica
    okQ[n_] := Block[{p = Times @@ IntegerDigits[n]}, n == p || PrimeQ[n/p]]; Select[ Range[36000], okQ]
    Select[Range[40000],FreeQ[IntegerDigits[#],0]&&!CompositeQ[#/Times@@IntegerDigits[#]]&] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    is(n) = { my(vp = vecprod(digits(n))); if(vp > 0, c = n/vp; if(denominator(c) == 1, if(c == 1 || isprime(c), return(1)))); 0} \\ David A. Corneth, Mar 30 2021